首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

2.
3.
The main purpose of the current paper is to propose a new numerical scheme based on the spectral element procedure for simulating the neutral delay distributed‐order fractional damped diffusion‐wave equation. To this end, the temporal direction has been discretized by a finite difference formula with convergence order where 1<α<2. In the next, to obtain a full‐discrete scheme, we apply the spectral finite element method on the spatial direction. Furthermore, the unconditional stability of semidiscrete scheme and convergence order of full‐discrete scheme of new technique are discussed. Finally, 2 test problems have been considered to demonstrate the ability and efficiency of the proposed numerical technique.  相似文献   

4.
A backward Euler alternating direction implicit (ADI) difference scheme is formulated and analyzed for the three‐dimensional fractional evolution equation. In our method, the Riemann‐Liouville fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, an ADI technique is adopted to reduce the multidimensional problem to a series of one‐dimensional problems. A fully discrete difference scheme is constructed with space discretization by finite difference method. Two new inner products and corresponding norms are defined to analyze the scheme. The verification of stability and convergence is based on the nonnegative character of the real quadratic form associated with the convolution quadrature. Numerical experiments are reported to demonstrate the efficiency of our scheme.  相似文献   

5.
In this work, we study finite difference scheme for coupled time fractional Klein‐Gordon‐Schrödinger (KGS) equation. We proposed a linearized finite difference scheme to solve the coupled system, in which the fractional derivatives are approximated by some recently established discretization formulas. These formulas approximate the solution with second‐order accuracy at points different form the grid points in time direction. Taking advantage of this property, our proposed linearized scheme evaluates the nonlinear terms on the previous time level. As a result, iterative method is dispensable. The coupled terms in the scheme bring difficulties in analysis. By carefully studying these effects, we proved that the proposed scheme is unconditionally convergent and stable in discrete norm with energy method. Numerical results are included to justify the theoretical statements.  相似文献   

6.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

7.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

8.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

10.
In this paper, we present a novel discrete scheme based on Genocchi polynomials and fractional Laguerre functions to solve multiterm variable‐order time‐fractional partial differential equations (M‐V‐TFPDEs) in the large interval. In this purpose, the accurate modified operational matrices are constructed to reduce the problems into a system of algebraic equations. Also, the computational algorithm based on the method and modified operational matrices in the large interval is easily implemented. Furthermore, we discuss the error estimation of the proposed method. Ultimately, to confirm our theoretical analysis and accuracy of numerical approach, several examples are presented.  相似文献   

11.
In this paper, the ‐expansion method is proposed to establish hyperbolic and trigonometric function solutions for fractional differential‐difference equations with the modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential‐difference equation into its differential‐difference equation of integer order. We obtain the hyperbolic and periodic function solutions of the nonlinear time‐fractional Toda lattice equations and relativistic Toda lattice system. The proposed method is more effective and powerful for obtaining exact solutions for nonlinear fractional differential–difference equations and systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Haibo Bao  Ju H. Park  Jinde Cao 《Complexity》2016,21(Z1):106-112
This article presents new theoretical results on the synchronization for a class of fractional‐order delayed neural networks with hybrid coupling that contains constant coupling and discrete‐delay coupling. This is the first attempt to investigate the synchronization problem of fractional‐order coupled delayed neural networks. Based on the fractional‐order Lyapunov stability theorem and Kronecker product properties, sufficient criteria are established to ensure the fractional‐order coupled neural network to achieve synchronization. Numerical simulations are given to illustrate the correctness of the theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 106–112, 2016  相似文献   

13.
Dynamical behavior of many nonlinear systems can be described by fractional‐order equations. This study is devoted to fractional differential–difference equations of rational type. Our focus is on the construction of exact solutions by means of the (G'/G)‐expansion method coupled with the so‐called fractional complex transform. The solution procedure is elucidated through two generalized time‐fractional differential–difference equations of rational type. As a result, three types of discrete solutions emerged: hyperbolic, trigonometric, and rational. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, an efficient numerical procedure for the generalized nonlinear time‐fractional Klein–Gordon equation is presented. We make use of the typical finite difference schemes to approximate the Caputo time‐fractional derivative, while the spatial derivatives are discretized by means of the cubic trigonometric B‐splines. Stability and convergence analysis for the numerical scheme are discussed. We apply our scheme to some typical examples and compare the obtained results with the ones found by other numerical methods. The comparison shows that our scheme is quite accurate and can be applied successfully to a variety of problems of applied nature.  相似文献   

15.
The work presents a novel coupling of the Laplace Transform and the compact fourth‐order finite‐difference discretization scheme for the efficient and accurate solution of linear time‐fractional nonhomogeneous diffusion equations subject to both Dirichlet and Neumann boundary conditions. A translational transformation of the dependent variable ensures the Caputo derivative is aligned with the Riemann‐Louiville fractional derivative. The resulting scheme is computationally efficient and shown to be uniquely solvable in all cases, accurate and convergent to in the spatial domain. The convergence rates in the temporal domain are contour dependent but exhibit geometric convergence. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1184–1199, 2016  相似文献   

16.
In this article, we consider two‐dimensional fractional subdiffusion equations with mixed derivatives. A high‐order compact scheme is proposed to solve the problem. We establish a sufficient condition and show that the scheme converges with fourth order in space and second order in time under this condition.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2141–2158, 2017  相似文献   

17.
In this article, a high‐order finite difference scheme for a kind of nonlinear fractional Klein–Gordon equation is derived. The time fractional derivative is described in the Caputo sense. The solvability of the difference system is discussed by the Leray–Schauder fixed point theorem, while the stability and L convergence of the finite difference scheme are proved by the energy method. Numerical examples are provided to demonstrate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 706–722, 2015  相似文献   

18.
In this paper, a new computational scheme based on operational matrices (OMs) of two‐dimensional wavelets is proposed for the solution of variable‐order (VO) fractional partial integro‐differential equations (PIDEs). To accomplish this method, first OMs of integration and VO fractional derivative (FD) have been derived using two‐dimensional Legendre wavelets. By implementing two‐dimensional wavelets approximations and the OMs of integration and variable‐order fractional derivative (VO‐FD) along with collocation points, the VO fractional partial PIDEs are reduced into the system of algebraic equations. In addition to this, some useful theorems are discussed to establish the convergence analysis and error estimate of the proposed numerical technique. Furthermore, computational efficiency and applicability are examined through some illustrative examples.  相似文献   

19.
In this article, an implicit fully discrete local discontinuous Galerkin (LDG) finite element method, on the basis of finite difference method in time and LDG method in space, is applied to solve the time‐fractional Kawahara equation, which is introduced by replacing the integer‐order time derivatives with fractional derivatives. We prove that our scheme is unconditional stable and convergent through analysis. Extensive numerical results are provided to demonstrate the performance of the present method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

20.
This article deals with the fractional‐order modeling of a complex four‐dimensional energy supply‐demand system (FOESDS). First, the fractional calculus techniques are adopted to describe the dynamics of the energy supply‐demand system. Then the complex behavior of the proposed fractional‐order FOESDS is studied using numerical simulations. It is shown that the FOESDS can exhibit stable, chaotic, and unstable states. When it exhibits chaos, the FOESDS's strange attractors are plotted to validate the chaotic behavior of the system. Moreover, we calculate the maximal Lyapunov exponents of the system to confirm the existence of chaos. Accordingly, to stabilize the system, a finite‐time active fractional‐order controller is proposed. The effects of model uncertainties and external disturbances are also taken into account. An estimation of the stabilization time is given. Based on the latest version of the fractional Lyapunov stability theory, the finite‐time stability and robustness of the proposed method are proved. Finally, two illustrative examples are provided to illustrate the usefulness and applicability of the proposed control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 74–86, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号