首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
纳米级PbCO3的制备与应用   总被引:2,自引:0,他引:2  
PbCO3作为燃烧催化剂被广泛应用于推进剂中,但目前推进剂中使用的PbCO3颗粒尺寸大、粒度分布不均匀,严重地影响了固体推进剂的燃烧性能[1~3]。纳米粒子因其尺寸小,比表面积大,且随着粒径减小,比表面积急剧变大,活性中心数迅速增加,大大增强了纳米粒子的催化活性,使得各种纳米级  相似文献   

2.
TiO2基固体超强酸的制备及光催化性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
彭少洪  张渊明  钟理 《无机化学学报》2006,22(12):2258-2262
半导体氧化物TiO2对很多有机污染物吸附较强、催化氧化活性高,因此它在环境污染治理方面扮演极其重要的角色,被广泛用于光催化处理多种有机物,但常规二氧化钛半导体光催化剂较低的量子效率(约4%)使其应用受到一定程度的制约[1]。1979年H ino[2]等首次报道无卤素型SO42-/M xO y固体超强酸体系以来,引起化学工作者极大关注。固体超强酸催化剂如SO42-/TiO2,SbF5/SiO2/TiO2等是一类新型酸催化剂,广泛用于酯化反应、苯衍生物烷基化、烯烃齐聚等。研究发现,基于SO42-改性的TiO2固体超强酸催化剂对于有机物具有较高的光催化氧化活性[3,4],…  相似文献   

3.
<正>0引言近年来,具有复杂分级结构的物质由于具有新颖的磁学和电学性能而被广泛用于生物技术[1],催化剂[2],光学器件[3],药物释放[4],光子晶体[5]中。利用各种物理和化学方法,研究者们在制备各种纳米/微米尺度的分级结构上取得了很大的进步,这其中包  相似文献   

4.
高分子保护沉淀法制备超细纳米氧化镁   总被引:11,自引:0,他引:11       下载免费PDF全文
纳米氧化镁具有不同于本体材料的光、电、磁、化学特性,特别是超细纳米氧化镁由于其颗粒直径小、比表面积大,具有高纯度、高硬度和高熔点,高的反应活性,强吸附性,良好的低温烧结性,高电阻率等优良性质,可用于高绝缘材料,高质量的陶瓷材料,高性能阻燃纤维,环境保护的吸附剂、负载型甲醇和低碳醇合成的催化剂载体等领域,是一种有广泛应用价值的新型无机材料[1 ̄5]。已见报道的纳米氧化镁的制备方法有电子束蒸发法[6]、化学气相沉积法[7]、金属醇盐水解法,化学沉淀法[8,9],固相法[10],燃烧法[11],溶胶-凝胶法[12,13]等,然而由于氧化镁容易发生…  相似文献   

5.
用于过氧化氢分解的锰铅复合氧化物催化剂   总被引:5,自引:0,他引:5  
高浓度过氧化氢以其高密度、无毒性和环境友好等特点,在航天及其他领域有着广泛的应用前景,是近年来推进剂研究的热点之一[1]. 用于分解高浓度过氧化氢推进剂的催化剂主要有三类: 银网催化剂,贵金属催化剂和过渡金属氧化物催化剂[2]. 过渡金属氧化物催化剂,尤其是氧化锰催化剂,由于其价格便宜,且具有较好的抗氧化性,因而受到人们的关注[3]. 通过添加助剂来提高催化剂的性能是催化剂研究的常用方法. 文献已报道了通过添加氧化银[4]、氧化钴[5]、氧化锌[6]、氧化铁[7]和氧化铜[8]等氧化物,以提高氧化锰催化剂对H2O2分解的活性,但鲜见以氧化铅作为添加助剂. 本文主要研究了氧化铅对担载型氧化锰催化剂性能的促进作用.  相似文献   

6.
Buxing Han 《物理化学学报》2020,36(6):1907020-0
正硝化棉(NC)是固体推进剂中常见的含能组分,广泛应用于火炸药、爆炸胶、火箭推进剂中~(1–3),其分解特性与固体推进剂的燃烧性能密切相关~4。近年来,纳米金属氧化物作为燃烧催化剂对含能材料热分解过程的催化作用受到广泛关注~(5–7)。研  相似文献   

7.
基于水滑石类化合物的复合氧化物(LDO)是一类性能优异的固体碱催化剂,对其进行改性和功能化引起了越来越多的关注。本文将空心结构和Fe_3O_4引入到镁铝复合氧化物中,制备了一种空心结构磁性固体碱催化剂Fe_3O_4@LDO。这种空心结构磁性固体碱催化剂粒子具有以镁铝复合氧化物为壳层,空心Fe_3O_4为核的核壳结构。由于其独特的空心结构,Fe_3O_4@LDO粒子的悬浊液具有良好的稳定性,将其应用于催化Knoevenagel缩合反应,达到平衡后苯甲醛的转化率约为62%,显示出较好的催化性能。同时,Fe_3O_4@LDO粒子具有较强的磁性,非常方便分离与回收,是一种性能优良的磁性固体碱催化剂。  相似文献   

8.
固体超强酸是近年来研制开发出的一类新型催化材料[1-4],其克服了传统液体酸催化剂易腐蚀设备、污染环境、副反应多、产物选择性低等缺点.尤其是近年来纳米技术的应用,使得纳米级固体超强酸的研究颇受人们的青睐.但纳米级固体超强酸催化剂在与液体产物的分离及回收中存在困难.为了进一步改良纳米固体超强酸的性能,本研究将磁基体Fe3O4与固体超强酸复合,制得磁性纳米固体超强酸SO42-/ TiO2 - Fe3O4,并对其结构和催化性能进行了表征.  相似文献   

9.
0引言众所周知,钛及其合金具有优良的机械力学性能,但其生物活性不足。因此,在金属基体上涂敷一层生物活性涂层,结合金属与生物活性材料的各自优势,已成为世界各国学者研究最为活跃的生物复合材料体系之一。该体系可用于临床医学,作为人体硬组织等的修复替换材料。目前,已开发出多种在金属基体上制备生物活性涂层的工艺和方法。如:等离子沉积法[1]、离子束溅射法[2]、激光熔覆法[3]、溶胶鄄凝胶法[4]、电化学沉积与水热处理合成法[5]、电泳沉积[6]、电结晶[7]等多种方法。但现有涂层材料尚存在一些问题:(1)由于替换材料的高硬度而导致其周围硬组织坏死[8];(2)由于疲劳磨损或热膨胀不匹配引起涂层脱落[9];(3)由于异质相导致生物活性降解[10]。因此,研究新的制备工艺,开发新的生物复合材料体系就显得十分重要。考虑到Al2O3具有优异的抗磨损、耐腐蚀等性能,以及较好的生物相容性,常作为临床选用的人造硬组织承载材料[11],故在本研究工作中,我们首次采用阳极氧化与水热处理复合工艺研制酸式磷酸钙/Al2O3鄄Ti生物复合材料体系。该体系不同于由日本Ishizawa等研制的HAp/TiO2鄄Ti复合体系[12]。主要体现在两...  相似文献   

10.
<正>众所周知,纳米材料的尺寸大小、晶型、形貌构型等结构特征对材料的化学物理性能有重要的影响[1],由于特殊形貌的新材料所具有独特、新颖、高效的化学物理等方面的性质以及在众多领域中的潜在应用[2],特别是3D花状空心纳米结构新物质[3-4],新形貌物质的纳米材料的制备方法和应用特性已经吸引了世界上材料领域的广泛兴趣和关注[5]。目前为止,合成3D纳米结构的方法有自组装法、三维导向连接法以及水热法等,即通过使用有  相似文献   

11.
随着稀薄燃烧(lean-burn)发动机的推广使用和环保法规的日趋严格,消除稀燃尾气中的氮氧化物(N O x)已刻不容缓。N O x储存还原技术被认为是最具应用前景的方法之一[1,2]。目前,对Pt/BaA l2O4-A l2O3体系中N O x储存与还原机制的研究较多[1 ̄4],但对该体系中微量铂物种微观结构及其与性能的关系研究较少,这主要是由于Pt含量(0.1w t% ̄0.5wt%)太低,分散度较高,使表征方法受到很大限制。本文采用共沉淀-浸渍法制得具有较高比表面积和热稳定性的N O x储存还原催化剂Pt/BaA l2O4-A l2O3,应用荧光X-射线吸收精细结构方法(Fluores-cence-…  相似文献   

12.
近年来,碳纳米管(CNTs)[1]作为新型催化剂载体方面的研究[2~11]受到了广泛关注。由于碳纳米管具有纳米级卷曲的表面,与石墨烯相比其表面π键发生变化,从而导致新的电子结构[12],因此碳纳米管负载的催化剂在涉及电子传输过程的催化过程中具有特别的吸引力。燃料电池电极催化剂就是其中典型的一类[13~15]。已有研究者选用碳纳米管作为载体,将Pt[16~19]、PtRu[20,21]等具有催化活性的贵金属或其合金负载到碳纳米管上,展现出了很好的电催化氧化活性。然而,到目前为止,制备用于燃料电池的具有均匀尺寸和分散性的负载型纳米催化剂仍然是一项…  相似文献   

13.
钯纳米粒子在电极表面的制备及其对氧的催化还原   总被引:3,自引:0,他引:3  
纳米微粒的体积效应使其成为表面纳米工程及功能化纳米结构材料制备的理想研究对象 [1~ 3] .纳米粒子具有独特的电子、催化及光学特性[4 ] ,近年来关于纳米粒子的制备及其在材料科学领域中的应用受到研究者的极大关注 .而贵金属纳米粒子由于其在催化领域中的广泛应用而成为最重要的研究对象之一[5,6 ] .电催化氧还原是一直为化学家瞩目的研究领域[7~ 9] .研究主要目的之一是寻找合适的氧电极反应催化剂 ,并使之能够应用于燃料电池中 .其中催化氧电极材料研究得最多的是贵金属 Pt[10 ,11] .贵金属 Pd对氧催化还原的研究工作很少 .我们首次…  相似文献   

14.
纳米固体超强酸SO42-/ZrO2催化莰烯合成异龙脑   总被引:2,自引:0,他引:2  
自1979年报道了无卤素SO42-促进型氧化物固体酸以来[1],固体酸催化剂作为一类新型绿色催化剂备受人们关注。近来又发现将固体超强酸制成纳米微粒具有更强的催化活性[2-3]。本文以纳米固体超强酸SO42-/ZrO2为催化剂,以莰烯和草酸为原料,通过酯化-皂化法合成了异龙脑。1实验部分1  相似文献   

15.
纳米银掺杂二氧化硅复合颗粒的制备及表征   总被引:2,自引:0,他引:2  
0引言金属纳米颗粒因其粒子尺寸小(1 ̄100nm),比表面积大,表面原子数多,表面能和表面张力随粒径的下降急剧增大而具有量子尺寸效应[1]、小尺寸效应[2]、表面效应[3]及宏观量子隧道效应[4]等,从而出现了不同于常规固体的新奇特性,如:光学性质、磁性质以及电磁学性质[5],使其在催化、信息存储及非线性光学等领域展示了广阔的应用前景[6]。虽然制备金属纳米颗粒的方法有很多[6],但是由于纳米尺寸的金属颗粒具有较高的表面能,容易发生聚集,所以如何保持其稳定性依旧是比较困难的问题。随着纳米科技的发展,人们正尝试用各种方法来解决这个问题:如…  相似文献   

16.
银纳米修饰电极的制备及电化学行为   总被引:7,自引:0,他引:7       下载免费PDF全文
金属纳米粒子由于其小的体积和大的比表面积而具有独特的电子、光学和异相催化特性,是目前表面纳米工程及功能化纳米结构制备的一种理想研究对象[1]。银纳米粒子可广泛应用于催化剂材料、电池的电极材料、低温导热材料和导电材料等,成为近年来人们研究的热点[2,3]。在电化学方面,银纳米粒子具有比其他纳米粒子更为优异的导电性能和电催化性能。因此,研究银纳米粒子修饰电极有重要的应用价值和前景[4]。1实验部分1.1仪器CHI660电化学工作站(USA);TU-1901型双光束紫外可见分光光度计(北京普析通用仪器公司);KQ-100型超声清洗器(昆山市超声…  相似文献   

17.
紫外光照处理对TiO2膜光伏性能的影响   总被引:3,自引:0,他引:3  
近年来人们利用纳米晶TiO2电极取代普通的TiO2电极[1],使其太阳能电池的光电转换效率得到很大提高.纳米晶TiO2电极具有大量表面态,在化学上表现为Ti3+或Ti—OH,对于光生电荷的分离过程和迁移过程有重要影响.这些表面化学结构的变化可能会导致TiO2的光伏性能的变化.1997年Fujishima等[2]用紫外光照射TiO2膜使它具有超亲水的性质,结构分析表明,超亲水的原因在于光照使TiO2膜的表面形成Ti—OH[3].因此,在光照处理的同时可能会导致TiO2的光伏性的变化.本文对紫外光照处理TiO2膜的光伏性能进行了研究,并结合光诱导TiO2的亲水性变化对光伏性能变化的原因进行了讨论.  相似文献   

18.
电化学溶解钛金属直接水解法制备纳米TiO_2   总被引:4,自引:0,他引:4  
纳米材料是目前材料科学的热点 .TiO2作为一种重要的无机功能材料 ,具有温敏、气敏、光催化等功能 ,广泛用于光电材料、涂料、传感器、介电材料、催化剂及载体等重要领域 .由于其各种应用都与粉体的性能有直接关系 ,因此研究纳米 TiO2的制备方法具有重要的实际意义 [1].近年来 ,纳米 TiO2粉体制备方法有了很大的发展 ,如 TiCl4气相水解沉淀法 [2],乳浊液法和 Ti(OC4H9)4水解沉淀法 [1],喷雾热解法 [3],放电爆炸法 [4],反应电极埋弧法 [5],溶胶凝胶 (Sol gel)法 [6]等 ,其中溶胶凝胶法是制备纳米材料的有效方法 .但这些方法存在…  相似文献   

19.
二甲醚(DME)是重要的化工原料[1],在制药、喷雾剂、致冷剂等工业中有着广泛的用途.十六烷值高、燃烧污染小的特性也使其成为公认的绿色燃料[2].浆态床反应器由于具有优异的移热性能而成为低成本制DME最有前景的反应床型[3~5],但催化剂的稳定性差是制约其工业化应用的主要障碍.  相似文献   

20.
溶剂热合成具有纳米孔结构的γ-Al2O3   总被引:2,自引:0,他引:2  
0引言γ-Al2O3又称活性氧化铝,一般具有较高的比表面积,在工业生产中被广泛用作吸附剂和催化剂载体[1],尤其是可作为负载贵金属催化剂的载体[2 ̄4]。纳米级的γ-Al2O3由于颗粒粒径小而在其颗粒表面形成了丰富的失配键和欠氧键,以此制成多孔薄膜作为催化剂及催化剂载体,其性能比目前使用的同类产品性能要优越许多[5]。但纳米级的γ-Al2O3也存在一些缺点,如由于纳米颗粒的表面能较高导致了颗粒的团聚较严重,分散性较差;由于γ-Al2O3活性较高,所以其高温热稳定性不太好,这些缺点极大地限制了γ-Al2O3的应用范围。因此合成具有良好分散性和…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号