首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An analytical method for analysing acrylamide in coffee was validated. The analysis of prepared coffee includes a comprehensive clean-up using multimode solid-phase extraction (SPE) by automatic SPE equipment and detection by liquid chromatography tandem mass spectrometry using electrospray in the positive mode. The recoveries of acrylamide in ready-to-drink coffee spiked with 5 and 10 μg l−1 were 96±14% and 100±8%, respectively. Within laboratory reproducibility for the same spiking levels were 14% and 9%, respectively. Coffee samples (n = 25) prepared twice by coffee machines and twice by a French Press Cafetière coffee maker contained 8±3 μg l−1 and 9±3 μg l−1 acrylamide. Five ready-to-drink instant coffee prepared twice contained 8±2 μg l−1. Hence, the results do not show significant differences in the acrylamide contents in ready-to-drink coffee prepared by coffee machine, French Press or from instant coffee. Medium roasted coffee contained more acrylamide (10 μg l−1) than dark roasted coffee (5 μg l−1). Males aged 35–45 years, drinking on average 1.1 l coffee per day are exposed to the highest doses of acrylamide from coffee. The dietary intake of acrylamide from coffee comprises, on an average, 10 μg day−1 for males and 9 μg day−1 for females aged 35–45 years. Probabilistic modelling of the exposure of Danish consumers (all adults) to acrylamide from coffee shows a mean exposure of 6.5 μg day−1 and a 95 percentile of 18 μg day−1.  相似文献   

2.
The proposed method for cyanide determination at the ultratrace level by differential pulse voltammetry is based in the sensitivity enhancement obtained when both Cu(II) and EDTA are present in the background electrolyte. Comparison of the detection limits and linear dynamic ranges using the conventional borate (pH 9.75), and the proposed borate-EDTA–Cu(II) background electrolytes was carried out. Best results have been obtained with the addition of 0.5 mmol l−1 EDTA and 0.02 mmol l−1 of Cu(II), which allow a detection limit of 1.7 μg l−1 CN (65 nmol l−1 — absolute detection limit 34 ng) with a precision better than ±2% for a 40 μg l−1 level. Calibration range extended from detection limit up to 100 μg l−1. Cyclic voltammetry indicates that the measured cyanide peak is obtained when the electrogenerated CuCN adsorbed onto the hanging mercury drop electrode surface, is oxidised at positive going potential scan. The method has been successfully applied to various industrial waste waters such as metal-finishing waste waters, water/sand mixtures from cleaning processes of coke production, leachates from wastes obtained from electrolytic cells of aluminium production, and liquors from gold extraction industry. Results obtained by the proposed method showed good agreement with those obtained by the standard methods (ion-selective potentiometry and the spectrophotometric pyridine method).  相似文献   

3.
A simple GF-AAS method for speciation analysis of chromium in mineral waters and salinas was developed. Cr(VI) species were separated from Cr(III) by solid-phase extraction with APDC (ammonium pyrrolidinedithiocarbamate). The APDC complexes were formed in the sample solution under proper conditions, adsorbed on Diaion HP-2MG resin and the resin was separated from the sample. After elution with concentrated nitric acid Cr(VI) was determined by GF-AAS. Total chromium was determined by GF-AAS directly in the sample and Cr(III) concentration was calculated as the difference between those results.

The detection limit of the method defined as 3 s of background variation was 0.03 μg l−1 for Cr(VI) and 0.3 μg l−1 for total chromium. RSD for Cr(VI) determination at the concentration of 0.14 μg l−1 was 9%, and for total chromium at the concentration of 5.6 μg l−1 was 5%. The recovery of Cr(VI) was in the range of 94–100%, dependently on type of the sample.

The investigation of recovery of the spiked Cr(VI) showed that at concentration levels near 1 μg l−1 and lower recovery may be reduced significantly even by pure reagents that seem to be free from any reductants.  相似文献   


4.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

5.
Soylak M  Tuzen M  Mendil D  Turkekul I 《Talanta》2006,70(5):1129-1135
A solid phase extraction procedure based on biosorption of copper(II), lead(II), zinc(II), iron(III), nickel(II) and cobalt(II) ions on Aspergillus fumigatus immobilized Diaion HP-2MG has been investigated. The analytical conditions including amounts of A. fumigatus, eluent type, flow rates of sample and eluent solutions were examined. Good recoveries were obtained to the spiked natural waters. The influences of the concomitant ions on the retentions of the analytes were also examined. The detection limits (3sigma, N = 11) were 0.30 μg l−1 for copper, 0.32 μg l−1 for iron, 0.41 μg l−1 for zinc, 0.52 μg l−1 for lead, 0.59 μg l−1 for nickel and 0.72 μg l−1 for cobalt. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of three standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 1515 Apple leaves and GBW 07605 Tea). The procedure was successfully applied for the determination of analyte ions in natural waters microwave digested samples including street dust, tomato paste, black tea, etc.  相似文献   

6.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

7.
Chen J  Xiao S  Wu X  Fang K  Liu W 《Talanta》2005,67(5):992-996
Cloud point extraction (CPE) has been used for the pre-concentration of lead, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and later analysis by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation phase were optimized. Separation of the two phases was accomplished by centrifugation for 15 min at 4000 rpm. Under the optimum conditions i.e., pH 8.0, cloud point temperature 40 °C, [5-Br-PADAP] = 2.5 × 10−5 mol l−1, [Triton X-114] = 0.05%, added methanol volume = 0.15 ml, pre-concentration of only 10 ml sample permitted an enhancement factor of 50-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 0.08 μg l−1. The precision for 10 replicate determinations at 5 μg l−1 Pb was 2.8% relative standard deviation (R.S.D.). The calibration graph using the pre-concentration system for lead was linear with a correlation coefficient of 0.9984 at levels near the detection limits up to at least 30 μg l−1. The method was successfully applied to the determination of lead in water samples.  相似文献   

8.
The diffusive gradients in thin films technique (DGT) was used to measure depth profiles of mercury in river and marine sediments in situ to a spatial resolution of 0.5 cm. Agarose gel was used as the diffusive gel in the DGT probes. Two different selective resins—Chelex 100 with iminodiacetic groups and Spheron-Thiol with thiol groups incorporated in the polyacrylamide resin gel—were tested. The different capture efficiencies of the two adsorbents enabled the fractions of mercury bound in different species in sediment pore water to be estimated. Mercury concentrations obtained by DGT with Spheron-Thiol resin were very similar to those obtained after centrifugation. This indicates that DGT with Sheron-Thiol resin reports on total dissolved mercury levels. The concentration of mercury measured by DGT with Chelex-100 resin was much lower (by a factor of 5–20) for the same sediment samples. Chelex-100 does not have such a high affinity to mercury as Spheron-Thiol, and so it only reports on the content of labile mercury species, such as inorganic ions and weak complexes. The content of labile mercury species in the river sediment was approximately 20% of the total dissolved mercury in pore water, whereas in marine sediment only 7% of the mercury was present as labile species.  相似文献   

9.
The effect of arsenate on phosphate determination by the malachite green spectrophotometric method was investigated. The molar absorptivities of the molybdophosphate and malachite green–molybdoarsenate species at 625 nm and a final acidity of 0.38 M were calculated as 10.4±0.13×104 and 7.2±0.17×104 l mol−1 cm−1 respectively, indicating that arsenate could interfere in phosphate measurement. Arsenate concentrations as low as 23 μg l−1 caused increase in colour development in phosphate solutions. However, the extent of colour development for both anions depended on the final acid concentration of the solution. An acidified sodium sulphite solution (0.83 M NaSO3, 0.83 M H2SO4) quantitatively prevented arsenate colour development up to 300 μg l−1 As(V). It was also demonstrated that the method removed As(V) interferences in mixed As/P solutions and therefore can be used to treat natural water samples with elevated arsenate concentrations before phosphate measurement.  相似文献   

10.
An atomic absorption spectrophotometric method for the determination of trace copper after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been developed. This chelate is adsorbed on the adsorbent in the pH range 1–8. The copper chelate is eluted with 5 ml of 0.1 mol l−1 potassium cyanide and determined by flame atomic absorption spectrometry (FAAS). The selectivity of the proposed procedure was also evaluated. Results show that iron(III), zinc(II), manganese(II) and cobalt(II) at the 50 μg l−1 level and sodium(I), potassium(I), magnesium(II), calcium(II) and aluminium(III) at the 1000 μg l−1 level did not interfere. A high enrichment factor, 200, was obtained. The detection limit (3σ) of copper was 0.34 μg l−1. The precision of the method, evaluated by seven replicate analyses of solutions containing 5 μg of copper was satisfactory and the relative standard deviation was 1.7%. The adsorption of copper onto Ambersorb 572 can formally be described by a Langmuir equation with a maximum adsorption capacity of 14.3 mg g−1 and a binding constant of 0.00444 l mg−1. The accuracy of the method is confirmed by analysing tomatoes leaves (NIST 1573a) and lead base alloy (NBS 53e). The results demonstrated good agreement with the certified values. This procedure was applied to the determination of copper in waters (tap, river and thermal waters), aluminium foil and tea samples.  相似文献   

11.
A continuous flow system for the determination of lead in home made spirituous beverages was developed. The determination was based on the formation of a neutral chelate of the element with ammonium pyrrolidine dithiocarbamate, its adsorption onto a minicolumn packed with sodium faujasite type Y synthetic zeolite, followed by elution with methyl isobutyl ketone and determination by flame atomic absorption spectrometry. Ethanol and copper interfere strongly in the determination and therefore, must be separated prior to the analysis. Copper is removed by precipitation with rubeanic acid, while ethanol is eliminated by rotaevaporation. Sample solutions containing Pb2+ in the concentration range from 5 to 120 μg l−1 at pH 2.5 could be analyzed, by using a preconcentration time of 3 min. Preconcentration factors from 80 to 140 were achieved for a sample volume of 6 ml and the detection limit varied from 1.4 to 3.5 μg l−1, depending on the matrix composition. The relative standard deviations for 60 μg l−1 Pb was 3.2% (n = 10) and the recovery of spikes (20, 40, 60 and 80 μg l−1) added to the samples was estimated within 92–105% range, suggesting that lead can be quantitatively determined in such samples. Determining lead in several samples by an alternative technique further checked the accuracy. Finally, the concentrations of Pb2+ determined in 28 samples of Venezuelan spirituous beverages were in 12.6–370.0 μg l−1 range, depending on the fermenting material based on different mixtures of agave, raw sugar cane and white sugar.  相似文献   

12.
By HG-AFS, a new method was proposed for simultaneous determination of total arsenic and total selenium existed in the Chinese medicinal herbs in tartaric acid medium. The effects of analytical conditions and coexisting ions on the fluorescence signal intensity of analytes were investigated. The proposed method was provided with linear response ranges above 22 μg l−1 for As and 44 μg l−1 for Se, and the detection limits of 0.13 and 0.12 μg l−1 were obtained for As and Se respectively. The recoveries of 93.8–96.1% for As and 95.3–99.1% for Se, and the precision of 1.2–3.8% and 2.4–5.3% (R.S.D., n = 8) respectively, were obtained via simultaneous determined four samples of Chinese medicinal herbs and three certified botanic reference materials successfully. The proposed method has the advantages of simple operation, high sensitivity and high efficiency.  相似文献   

13.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

14.
《Analytica chimica acta》2004,520(1-2):117-124
Changes in fresh weight, total protein amounts (Bradford’s method), cadmium concentration (DPASV) and glutathione content (HPLC/MS) were studied in maize kernels cultivated for 5 days at three different cadmium concentrations (0, 10 and 100 μmol l−1 CdCl2). A highly sensitive HPLC/MS method was used for the determination of glutathione on a reversed-phase Atlantis dC18 chromatographic column (150 mm×2.1 mm, 3 μm particle size). An isocratic mode with acetonitrile–0.01% TFA (5:95, flow rate 0.1 ml min−1 and 30 °C) was applied. The m/z spectra and the data for the selected ion monitoring (SIM) mode were recorded at m/z for glutathione 308→179. Cadmium concentration was measured by a differential pulse adsorptive stripping voltammetry (DPASV) after deposition on a hanging mercury drop electrode (HMDE) at potential −0.7 V (accumulation time 180 s, acetate buffer of pH 3.6, 22 °C). An AUTOLAB with a VA-Stand 663 and a three-electrode system consisting of the HMDE as a working electrode with area 0.4 mm2, an Ag/AgCl/3 mol l−1 KCl as a reference electrode and a Pt-wire as an auxiliary electrode was employed. The maize kernels exposed to the highest cadmium concentration (100 μmol l−1) germinated formerly and much better. A rapid increase of the fresh weight probably relates with more intensive uptake of water in order to decrease cadmium concentration. An intensive preservation of homeostasis of Cd2+ ions in the germinating plants by defending mechanisms might explain differences of uptake rate of cadmium. The linear increase of GSH content with the exposure time at all studied concentration suggests the defending mechanisms might be triggered by concentrations of a heavy metal.  相似文献   

15.
A flow injection wetting-film extraction system without segmentor and phase separator has been coupled to flame atomic absorption spectrometry for the determination of trace copper. Isobutyl methyl ketone (MIBK) was selected as coating solvent and 8-hydroxyquinoline (oxine) as the chelating reagent. By switching of a 8-channel valve and alternative initiation of two peristaltic pumps, MIBK, sample solution containing copper chelate of oxine, and air-segment sandwiched eluting solution (1.0 mol l−1 nitric acid) were sequentially aspirated into an extraction coil made of PTFE tubing of 360 cm length and 0.5 mm i.d. The formation of organic film in the wall of the extraction coil, extraction of the copper chelate into the organic film and back-extraction of the analyte into the eluting solution occurred consecutively when these zones aspirated into the extraction coil were propelled down the extraction coil by a carrier solution at a flow rate of 2 ml min−1. After leaving the extraction coil, the concentrated zone was transported to the nebulizer at its free uptake rate for atomization. Under the optimized conditions, an enrichment factor of 43 and a detection limit of 0.2 μg l−1 copper were achieved at a sample throughput rate of 30 h−1. Eleven determinations of a standard copper solution of 60 μg l−1 gave a relative standard deviation of 1.5%. Foreign ions possibly present in tap water and natural water did not interfere with the copper determination. The developed method has been successfully used to the determination of copper content of tap water and river water.  相似文献   

16.
A highly sensitive cathodic stripping voltammetric method for the determination of naringin is presented. It is based on the formation and accumulation of two naringin–mercury complexes at the electrode surface, followed by reduction of the surface species during a differential pulse voltammetric scan. The cathodic stripping responses at −0.25 V and −0.42 V, are evaluated with respect to various experimental conditions, such as composition and pH of the supporting electrolyte, naringin concentration, accumulation potential and preconcentration time. The new method is suitable for the determination of naringin concentrations between 0.1 mg l−1 (1.72×10−7 mol l−1) and 40 mg l−1 (6.88×10−5 mol l−1). A 3σ limit of detection of 32 μg l−1 (55 nmol l−1) can be reached. The relative standard deviation (r.s.d.) is <1.5%. Recovery experiments yielded a mean recovery of 97% (r.s.d.=4.1%). The application of the procedure to the selective determination of naringin in grapefruit juice is demonstrated.  相似文献   

17.
Arancibia V  López A  Zúñiga MC  Segura R 《Talanta》2006,68(5):1567-1573
The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO2. Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)3 were achieved when the experiments were carried out at a pressure of 2500 psi, a temperature of 90 °C, 2.0 mL of methanol, 20.0 min of static extraction and 5.0 min of dynamic extraction in the presence of 18 mg of ADDTP. Analysis of arsenic was made using 150 mg L−1 of Cu(II) in 1 M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of −0.50 V and the intermetallic compound CuxAsy was reduced at a potential of −0.77 to −0.82 V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)3 solution was linear from 0.8 to 12.5 μg L−1 of arsenic (LOD 0.5 μg L−1, R = 0.9992, tacc = 60 s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10 ± 0.18 mg kg−1; pulp 3.83 ± 0.19 mg kg−1 and juice 0.71 ± 0.09 mg L−1; arsenic in carrots was: skin 2.15 ± 0.09 mg kg−1; pulp 0.59 ± 0.11 mg kg−1 and juice 0.71 ± 0.03 mg L−1. Arsenic in water were: Chiu-Chiu 0.08 mg L−1, Inacaliri 1.12 mg L−1, and Salado river 0.17 ± 0.07 mg L−1.  相似文献   

18.
A procedure for arsenic species fractionation in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) by extraction is described. Several parameters were tested in order to evaluate the extraction efficiency of the process: extraction medium, nature and concentration (tris(hydroxymethyl)aminomethane, phosphoric acid, deionised water and water/methanol mixtures), extraction time and physical treatment (magnetic stirring, ultrasonic bath and ultrasonic focussed probe). The extraction yield of arsenic under the different conditions was evaluated by determining the total arsenic content in the extracts by ICP-AES. Arsenic compounds were extracted in 5 mL of water by focussed sonication for 30 s and subsequent centrifugation at 14,000 × g for 10 min. The process was repeated three times. Extraction studies show that soluble arsenic compounds account for about 65% of total arsenic.

An ultrafiltration process was used as a clean-up method for chromatographic analysis, and also allowed us to determine the extracted arsenic fraction with a molecular weight lower than 10 kDa, which accounts for about 100% for all samples analysed.

Speciation studies were carried out by HPLC–ICP-AES. Arsenic species were separated on a Hamilton PRP-X100 column with 17 mM phosphate buffer at pH 5.5 and 1.0 mL min−1 flow rate. The chromatographic method allowed us to separate the species As(III), As(V), MMA and DMA in less than 13 min, with detection limits of about 20 ng of arsenic per species, for a sample injection volume of 100 μL. The chromatographic analysis allowed us to identify As(V) in Hizikia (46 ± 2 μg g−1), Sargassum (38 ± 2 μg g−1) and Chlorella (9 ± 1 μg g−1) samples. The species DMA was also found in Chlorella alga (13 ± 1 μg g−1). However, in Laminaria alga only an unknown arsenic species was detected, which eluted in the dead volume.  相似文献   


19.
The water residence time of a high-mountain seepage lake in the Austrian Alps was derived from the flushing rate of a tracer substance. A diluted lithium chloride solution was injected into the lake during holomictic conditions in order to favour the homogeneous distribution of the tracer. The exponential decline of the mass of lithium in the lake revealed a water residence time of 1.5 to 3 months for summer and almost no lake water exchange during winter. Lithium concentrations ranged from background values of 0.06 μg l−1 to about 3 μg l−1 immediately after the tracer injection. Lake water samples were analyzed with ion-exchange chromatography using a Dionex device with a CS 12A separation column. The method detection limit determined according to the definition of the US Envirinmental Protection Agency amounted to 0.009 μg l−1.  相似文献   

20.
Bagheri H  Gholami A 《Talanta》2001,55(6):681-1150
A new, simple and sensitive method for the simultaneous determination of mercury(II) and methylmercury chloride at sub-ng l−1 levels in river waters is described. Inorganic and organic mercury were preconcentrated from fresh water samples simultaneously on a laboratory-made column containing 2-mercaptobenzimidazol loaded on silica gel and then quantitatively eluted with 0.05 M KCN solution and 2.0 M HCl to desorp inorganic and methylmercury species, respectively. After irradiation with an intensive UV source, MeHg+ was decomposed and mercury vapours were generated from inorganic and organic mercury using an acidic SnCl2 solution in a continuous flow system and were subsequently determined with a cold vapour atomic fluorescence (CV-AFS) spectrometer. Detection limits (3σ) were 0.07 and 0.05 ng l−1 (as Hg) for mercury(II) chloride and methylmercury chloride, respectively. Relative standard deviations of method (%R.S.D.) were 8.8 and 10 for inorganic and organomercuric species in the river water, respectively. The analysis of real samples, taken from different rivers, showed that inorganic mercury levels ranged from 4.0±0.6 to 12±1 ng l−1 (as Hg and 95% confidence limit) and methylmercury levels at 0.2±0.02 ng l−1(as Hg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号