首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We herein report upon an approach whereby the interpretation of tandem mass spectrometry spectra can be both expedited and simplified via the accurate mass assignment of product ions utilizing a tandem quadrupole time-of-flight mass spectrometer (QqTOF). The applicability of the QqTOF in the drug metabolism laboratory is illustrated by the elucidation and differentiation of the dissociative pathways for Bosentan and its hydroxylated and demethylated metabolites. Target analyte fragmentation mechanisms were readily achieved by the measurement of product ions with a mass accuracy <5 ppm, possible by single-point internal recalibration using the residual precursor ion as calibrant. Differentiation of both precursor and product ions from nominally isobaric matrix species derived from biological extracts is demonstrated by operation of the QqTOF at resolutions of 8000 (m/ΔmFWHM).  相似文献   

2.
We present FiD (Fragment iDentificator), a software tool for the structural identification of product ions produced with tandem mass spectrometric measurement of low molecular weight organic compounds. Tandem mass spectrometry (MS/MS) has proven to be an indispensable tool in modern, cell-wide metabolomics and fluxomics studies. In such studies, the structural information of the MS(n) product ions is usually needed in the downstream analysis of the measurement data. The manual identification of the structures of MS(n) product ions is, however, a nontrivial task requiring expertise, and calls for computer assistance. Commercial software tools, such as Mass Frontier and ACD/MS Fragmenter, rely on fragmentation rule databases for the identification of MS(n) product ions. FiD, on the other hand, conducts a combinatorial search over all possible fragmentation paths and outputs a ranked list of alternative structures. This gives the user an advantage in situations where the MS/MS data of compounds with less well-known fragmentation mechanisms are processed. FiD software implements two fragmentation models, the single-step model that ignores intermediate fragmentation states and the multi-step model, which allows for complex fragmentation pathways. The software works for MS/MS data produced both in positive- and negative-ion modes. The software has an easy-to-use graphical interface with built-in visualization capabilities for structures of product ions and fragmentation pathways. In our experiments involving amino acids and sugar-phosphates, often found, e.g., in the central carbon metabolism of yeasts, FiD software correctly predicted the structures of product ions on average in 85% of the cases. The FiD software is free for academic use and is available for download from www.cs.helsinki.fi/group/sysfys/software/fragid. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A novel method for separating ions according to their charge state using a quadrupole time-of-flight mass spectrometer is presented. The benefits of charge state separation are particularly apparent in protein identification applications at low femtomole concentration levels, where in conventional TOF MS spectra peptide ions are often lost in a sea of chemical noise. When doubly and triply charged tryptic peptide ions need to be filtered from singly charged background ions, the latter are suppressed by two to three orders of magnitude, while from 10-50% of multiply charged ions remain. The suppression of chemical noise reduces the need for chromatography and can make this experimental approach the electrospray equivalent of conventional MALDI peptide maps. If unambiguous identification cannot be achieved, MS/MS experiments are performed on the precursor ions identified through charge separation, while the previously described Q2-trapping duty cycle enhancement is tuned for approximately 1.4 of the precursor m/z to enhance intensities of ions with m/z values above that of the precursor. The resulting product ion spectra contain few fragments of impurities and provide quick and unambiguous identification through database search. The multiple charge separation technique requires minimal tuning and may become a useful tool for analysis of complex mixtures.  相似文献   

4.
Metabolism data provided with reduced cycle time has become of increasing importance for the early evaluation of DMPK properties of drugs in discovery. In this regard, quadrupole time-of-flight hybrid mass spectrometers (Q-TOF) can provide very reliable metabolite identification via accurate mass measurement of ions and the consequent access to the elemental composition of the metabolite. However, due to their cost, they are often used for drug metabolism studies on later stage drug candidates or to address challenging metabolism questions. A new prototype, consisting of a five-channel multiplexed electrospray ionization (ESI) source on a Q-TOF with one channel used for lock-mass compound infusion, was evaluated for metabolite identification. The goal was to increase the sample throughput of a single ESI-MS system by a factor of 4, while maintaining efficient metabolite separation in high-performance liquid chromatography (HPLC) as well as adequate sensitivity and mass accuracy, and ultimately improve the speed and quality of metabolism studies supporting drug discovery. The analytical performance of the system was assessed by evaluating the sensitivity and mass accuracy (using real in vitro and in vivo samples), inter-channel differences in retention times, MS/UV response, and cross-talk among channels. The sensitivity using the multiplexed ESI source was on average 2-fold lower than with single ESI, correlating well with previous literature data. The mass accuracy was comparable to that obtained using single ESI in both MS and MS/MS modes, making the metabolite identification process using the multiplexed ESI source as reliable as with single ESI. Compound-dependent differences in ionization efficiencies were observed among channels, and were minimized by analyzing related samples on the same channel. Finally, the level of cross-talk among channels was acceptable (around 0.3%) and comparable to levels previously published for quantitative applications using multiplexed ESI. The paper also focuses on the advantages and disadvantages of this new approach compared to other approaches in the literature in the field of metabolite identification.  相似文献   

5.
A liquid chromatographic mass spectrometric strategy for systematic toxicological analysis (STA) is presented using the automatic 'on-the-fly' single mass spectrometry mode to tandem mass spectrometry mode (MS to MS/MS) switching abilities of a quadrupole time-of-flight (Q-TOF) instrument. During the chromatographic run, the quadrupole is initially set to transmit all masses until (an) ion(s) reaches a certain set threshold. Thereupon, the quadrupole automatically switches to the MS/MS mode, selecting the ion(s), which are subsequently fragmented in the high-efficiency hexapole collision cell, thus generating product ions that are further mass analyzed by the TOF. By limiting the TOF spectral accumulation time in the MS/MS mode to a statistically acceptable minimum, the quadrupole almost instantly switches back to the MS mode. Qualitative information, comprising the complementary MS ([M + H](+) ion mass) and MS/MS (informative product ion profile) data, as well as quantitative information obtained by integration of the MS extracted ion chromatogram(s), can be obtained in one single acquisition. Optimization of the automatic switching parameters, such as threshold, TOF spectral accumulation time, detection window and collision energy, was carried out by injection of a mix of 17 common drugs which were not necessarily baseline separated in the chromatographic system used. Indeed, the complete separation of the drugs is not deemed necessary since up to 8 different ions can 'simultaneously' be selected for MS/MS if they reach the preset criteria. In addition, the quantitative performance of the method was defined. In a second phase, the developed method was field-tested. To that end, the resulting data from extracts of urine samples were compared with and found to be in close concordance with those obtained by a standard toxicological analysis. This innovative approach clearly holds the potential for a substantial advance in the introduction of LC/MS in STA.  相似文献   

6.
An apparatus based on collinear tandem time-of-flight mass spectrometer has been designed for the measurement of infrared photodissociation spectroscopy of mass-selected ions in the gas phase.The ions from a pulsed laser vaporization supersonic ion source are skimmed and mass separated by a Wiley-McLaren time-of-flight mass spectrometer.The ion of interest is mass selected,decelerated and dissociated by a tunable IR laser.The fragment and parent ions are reaccelerated and mass analyzed by the second time-of-flight mass spectrometer.A simple new assembly integrated with mass gate,deceleration and reacceleration ion optics was designed,which allows us to measure the infrared spectra of mass selected ions with high sensitivity and easy timing synchronization.  相似文献   

7.
This study demonstrates structural and conformational characterization of proteins by nanoflow electrospray ionization (nanoESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS) utilizing a quadrupole time-of-flight (Q-TOF) mass spectrometer (Micromass, Manchester, England). Model peptides were successfully sequenced at the 35 attomole (amol) level, and peptides derived from a tryptic in-gel digest of 25 femtomole (fmol) bovine serum albumin (BSA) were successfully sequenced. The results demonstrated that the MS/MS sensitivity of the Q-TOF clearly surpassed the detection limit of the silver stain. A silver destaining step greatly improved the mass analysis of peptides derived from in-gel digests. Interestingly, sequence analysis revealed BSA residue 424 (tyrosine) as a potential chlorination site. In addition, a modified procedure was successfully used to extract and measure the masses of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-resolved proteins in the 10-68.5 kDa range. The Q-TOF was also used to monitor conformational changes of proteins. These experiments demonstrated an acid-induced denaturation of BSA in the pH 3-4 range, and heat-induced unfolding of cytochrome c between 50 and 60 degrees C. Finally, Zn2+ binding was demonstrated for the carbonic anhydrase apoprotein. In summary, the wide range of applications and the high quality of the experimental data made the Q-TOF mass spectrometer a powerful analytical tool for protein characterization.  相似文献   

8.
9.
Li HF  Liu J  Cai Z  Lin JM 《Electrophoresis》2008,29(9):1889-1894
The present study reports a simple method of coupling a glass microchip to an electrospray ionization (ESI) quadrupole time-of-flight mass spectrometer (QTOF-MS) for separation and identification of peptides. A sheath-flow electrospray interface was constructed based on attaching a short fused-silica capillary to the microchip. The dead volume at the interface was effectively reduced by wet etching an approximate flat-bottom capillary insertion channel coaxial to the end of separation microchannel and using a wire-controlled epoxy-blocking attachment method. The makeup liquid and neb gas were coaxially pumped through two stainless-steel tees to maintain a stable and efficient electrospray. The coupled microchip/ESI-QTOF-MS system was successfully used to carry out electrophoresis separation of peptides and ESI-QTOF-MS identification.  相似文献   

10.
Throughput for drug metabolite identification studies has been increased significantly by the combined use of accurate mass liquid chromatography/tandem mass spectrometry (LC/MS/MS) data on a quadrupole time-of-flight (QTOF) system and targeted data analysis procedures. Employed in concert, these tools have led to the implementation of a semi-automated high-throughput metabolite identification strategy that has been incorporated successfully into lead optimization efforts in drug discovery. The availability of elemental composition data on precursor and all fragment ions in each spectrum has greatly enhanced confidence in ion structure assignments, while computer-based algorithms for defining sites of biotransformation based upon mass shifts of diagnostic fragment ions have facilitated identification of positions of metabolic transformation in drug candidates. Adoption of this technology as the 'first-line' approach for in vitro metabolite profiling has resulted in the analysis of as many as 21 new chemical entities on one day from diverse structural classes and therapeutic programs.  相似文献   

11.
Graveoline is a biologically active ingredient extracted from Ruta graveolens. Current work aimed at investigating in vitro metabolism of graveoline using rat or human liver microsomes and hepatocytes. Graveoline (20 μM) was incubated with nicotinamide adenine dinucleotide phosphate–supplemented rat and human liver microsomes as well as hepatocytes. LC coupled to a photo diode array detector and quadrupole/time-of-flight tandem mass spectrometry was used to detect and identify the metabolites. The structures of the metabolites were identified by accurate mass, elemental composition, and indicative fragment ions. A total of 12 metabolites, comprising 6 phase I and 6 phase II metabolites, were obtained. The metabolic pathways included demethylenation, demethylation, hydroxylation, glucuronidation, and glutathion conjugation. The metabolite (M10) produced by opening the ring of the methylenedioxyphenyl moiety was detected as the most abundant in both liver microsomes and hepatocytes, mainly catalyzed by CYP1A2, 2C8, 2C9, 2C19, 2D6, 3A4, and 3A5. This study provides valuable information on the in vitro metabolism of graveoline, which is indispensable for further development and safety evaluation of this compound.  相似文献   

12.
A new type of mass analyzer is described, which allows lowresolution axial ion ejection to be obtained from a traveling wave based, stacked ring collision cell. Linking this ejection temporally with the scanning of the second quadrupole of a tandem quadrupole mass spectrometer provides an improvement in sampling duty cycle, which results in significant signal intensity improvements for scanning acquisitions such as product ion spectra. A near 100% storage efficiency is enabled by a split cell design, which allows ion fragmentation and accumulation to be performed in one section of the collision cell whilst previously accumulated ions are simultaneously ejected from the rear of the cell. These characteristics combine to give an m/z-dependent signal gain of 7–20X over a conventional scanning quadrupole for a 1000 Th scan. The ability to swap very rapidly from a non-enhanced mode of operation to an enhanced mode whilst retaining the existing sensitivity, speed, and functionality of a conventional tandem quadrupole mass spectrometer is also described.  相似文献   

13.
High mass measurement accuracy (MMA) is demonstrated for intact proteins and subsequent collision-induced dissociation product ions using internal calibration. Internal calibration was accomplished using a dual electrospray ionization source coupled with a hybrid quadrupole Fourier transform ion cyclotron resonance (Q-FT-ICR) mass spectrometer. Initially, analyte ions generated via the first electrospray (ESI) emitter are isolated and dissociated in the external quadrupole. This event is followed by a simultaneous switch to the calibrant ion ESI emitter and a disablement of the isolation and activation of the external quadrupole such that a broad m/z range of calibrant ions are accumulated before injecting the analyte/calibrant ion mixture into the ICR cell. Two different internal calibrant solutions were utilized in these studies to evaluate this approach for the top-down characterization of melittin and ubiquitin. While external calibration of protein fragments resulted in absolute MMA greater than 16 ppm, internal standardization significantly improved upon the MMA of both the intact proteins and their products ions which ranged from -2.0 ppm to 1.1 ppm, with an average of -0.9 ppm. This method requires limited modification to ESI-FT-ICR mass spectrometers and is applicable for both positive and negative ionization modes.  相似文献   

14.
A tandem time-of-flight (ToF) mass spectrometer consisting of a multi-turn time-of-flight (ToF) and a quadratic-field ion mirror has been designed and constructed. The instrument combines the unique capabilities of both ToF instruments, namely high-resolution and monoisotopic precursor ion selection from the multi-turn ToF and temporal focus for fragment ions with different kinetic energies from the quadratic-field mirror. The first tandem mass spectra for this unique combination of ToF systems are presented.  相似文献   

15.
A new approach to the search for residues of unknown growth promoting agents such as anabolic steroids and beta-agonists in feed is presented. Following primary extraction and clean-up, samples are separated using gradient liquid chromatography (LC). The effluent is split towards two identical 96-well fraction collectors and an optional electrospray quadrupole time-of-flight mass spectrometry (QTOFMS) system for accurate mass measurement. One 96-well plate is used for a bioassay (enzyme-immuno assay, receptor assay) and will detect the bioactivity and position of the relevant peak in the chromatogram. The positive well in the second 96-well plate is used for identification by LC/QTOFMS/MS. The value of this LC/bioassay/QTOFMS/MS methodology is highlighted by the finding and structure elucidation of a new beta-agonist in a feed extract.  相似文献   

16.
A matrix-assisted laser desorption/ionization (MALDI) source has been coupled to a tandem quadrupole/time-of-flight (QqTOF) mass spectrometer by means of a collisional damping interface. Mass resolving power of about 10,000 (FWHM) and accuracy in the range of 10 ppm are observed in both single-MS mode and MS/MS mode. Sub-femtomole sensitivity is obtained in single-MS mode, and a few femtomoles in MS/MS mode. Both peptide mass mapping and collision-induced dissociation (CID) analysis of tryptic peptides can be performed from the same MALDI target. Rapid spectral acquisition (a few seconds per spectrum) can be achieved in both modes, so high throughput protein identification is possible. Some information about fragmentation patterns was obtained from a study of the CID spectra of singly charged peptides from a tryptic digest of E. coli citrate synthase. Reasonably successful automatic sequence prediction (>90%) is possible from the CID spectra of singly charged peptides using the SCIEX Predict Sequence routine. Ion production at pressures near 1 Torr (rather than in vacuum) is found to give reduced metastable fragmentation, particularly for higher mass molecular ions. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The study of the metabolic fate of drugs is essential for the safety assessment of new compounds in the drug development process. However, the characterization and structural elucidation of metabolites from in vivo experiments is still a very challenging task. In this paper, we compare a two-dimensional liquid chromatography/mass spectrometry (LC/MS) approach using either a capillary LC/MS system or the recently introduced chip-based nanoelectrospray/MS system (Nanomate) as the second dimension for structural elucidation of metabolites by MS. More than 30 radioactive fractions of a chromatographic separation from a human urine sample were analyzed and 54 metabolites could be identified. The long persisting and stable nanoelectrospray enabled the search for unknown metabolites by precursor-ion scanning experiments followed by product-ion scanning experiments of potential metabolites using a quadrupole time-of-flight (qTOF) mass spectrometer. The number of fragments produced by nanoelectrospray with product-ion scanning was significantly higher compared to LC/MS experiments with in-source fragmentation. Therefore, the assignment of possible modifications in metabolites to certain moieties of the drug could be investigated with higher accuracy. The capillary LC/MS system for the second dimension was more sensitive in the case of low abundant metabolites. These metabolites could not be detected by direct nanoelectrospray infusion, which limits the application of the Nanomate for trace metabolites.  相似文献   

18.
Target compound monitoring is often not sufficient to assess the quality of water, as many of the unknown micro-contaminants present might be a threat to the environment and human health. In this work, the potential of hybrid quadrupole time-of-flight mass spectrometry (QTOF-MS) coupled to liquid chromatography (LC) in the elucidation of unknown compounds in environmental water samples has been explored. Based on accurate mass measurement, possible elemental compositions for the precursor ions were calculated. Using model compounds, a useful strategy was developed, enabling determination and evaluation of potential molecular formulae for the detected unknowns. The possibility of performing tandem mass spectrometric (MS/MS) acquisitions to obtain product ion spectra in accurate mass mode also helped to elucidate the structures of these unknowns or to detect some functional groups, to further evaluate potential formulae. The remaining formulae were searched against available databases such as the Merck Index and the NIST library. Where standards were commercially available, retention time and MS/MS data were both also used as confirmatory tools. The approach developed was applied for the identification of unknown compounds in different types of water. To improve sensitivity, environmental water samples were preconcentrated on-line in a polymeric cartridge by direct injection of 2 mL water into the SPE-LC/MS/MS system. For three unknowns, structures were proposed and confirmed with standards. Although other compounds could not be unequivocally identified based on the data available within this study, details about the possible structures of some are given.  相似文献   

19.
A strategy combining high-performance thin layer chromatography (HPTLC), laser densitometry, and fully automated chip-based nanoelectrospray (nanoESIchip) performed on a NanoMate robot coupled to QTOF-MS was developed, optimized, and for the first time applied for mapping and structural identification of gangliosides (GGs) extracted and purified from a human angioblastic meningioma specimen. While HPTLC pattern indicated only seven fractions migrating as GM3, GM2, GM1, GD3, GD1a (nLD1, LD1), GD1b, GT1b, and possibly GD2, due to the high sensitivity, mass accuracy, and ability to ionize minor species in complex mixtures, nanoESIchip-QTOF MS was able to discover significantly more GG species than ever reported in meningioma. Thirty-four distinct glycosphingolipid components of which five asialo, one GM4, nine GM3, two GM2, two GD3, nine GM1, and six GD1 differing in their ceramide compositions were identified. All structures presented long-chain bases with 18 carbon atoms, while the length of the fatty acid was found to vary from C11 to C25. MS screening results indicated also that the diversity of the expressed GM1 structures is higher than expected in view of the low proportions evidenced by densitometric quantification. Simultaneous fragmentation of meningioma-associated GM1 (d18:1/24:1) and GM1 (d18:1/24:0) by MS/MS using CID confirmed the postulated structures of the ceramide moieties and provided data on the glycan core, which document that for each of the GM1 (d18:1/24:1) and GM1 (d18:1/24:0) forms both GM1a and GM1b isomers are expressed in the investigated meningioma tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号