首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral Red can be used as an indicator, a stain reagent or a mediator compound in the studies of biological redox systems. No reports dealing with the electrode process of Neutral Red, especially, about its kinetics have been published. In this paper we report the determinations of formal reduction potentials, the number of electrons transferred, diffusion coefficient as well as the rate constant of heterogeneous electron transfer  相似文献   

2.
For anisotropic nanoporous materials, guest diffusion is often reflected by a diffusion tensor rather than a scalar diffusion coefficient. Moreover, the resulting diffusion anisotropy may notably differ for different guest molecules. As a particular class of such systems, we consider an array of two types of channels, mutually intersecting each other, where the rates of diffusion in the different directions depend on the nature of the guest molecules. The simultaneous adsorption of two types of guest molecules is considered, as in technical applications of porous materials such as catalysis. A case study is presented in which atomistic molecular dynamics (MD) and coarse-grained dynamic Monte Carlo (DMC) simulations are compared and shown to yield qualitatively similar results for non-steady-state diffusion. The two techniques are complementary. MD simulations are able to predict the details of molecular propagation over distances of a few unit cells, whereas the evolution of sorption profiles over distances comparable with entire crystallites can be studied with DMC simulations. Consideration of these longer length and time scales is necessary for applications of such systems in chemical separations and heterogeneous catalysis.  相似文献   

3.
Physicochemical parameters for heterogeneous catalytic reactions when the catalytic bed was under a liquid phase have been determined, using a non-linear adsorption isotherm by the reversed-flow version of inverse gas chromatography (RF-GC). The mathematical analysis developed in heterogeneous catalysis, mass transfer across gas-liquid boundaries, and diffusion coefficients of gases in liquids was associated with a non-linear adsorption isotherm to find the relevant equations pertaining to the problem. These equations were then used to calculate the adsorption/desorption rate constant, the rate constant for the first-order catalytic reaction and the equilibrium constant for the non-linear adsorption isotherm. The diffusion coefficients of the reactant in the liquid and gaseous phases and the partition coefficients for the distribution of the reactant between the gaseous and liquid phase were also determined.  相似文献   

4.
The ECL behavior of the luminol/H2O2 and luminol/O2 systems was evaluated at Pt electrode by using different electroanalytical techniques such as chronoamperometry, cyclic and rotating disk electrode (RDE) voltammetry. Diffusive and kinetic parameters such as the diffusion coefficient of luminol, D, the number of exchanged electrons, n, and the apparent heterogeneous rate constant, kap, were determined in the maximum light emission conditions achieved at pH 11, at an electrode potential of 750 mV vs. SCE. The experimental order of reaction were determined from the relation between the reactant concentrations and the emitted light intensity.  相似文献   

5.
The interfacial mass transfer kinetics of acetylacetone (acac), ethylene glycol mono-n-butyl ether (EGBE) and ethylene glycol monophenyl ether (EGPE) across water-carbon tetrachloride (Ccl4) and water-chloroform (CHCl3) interfaces were studied by stirring the two phases at various speeds, maintaining a quiescent interface with a constant area. In the analysis of data, two rate-determining steps consisting of a diffusion toward the interface and a mass exchange between the interface and bulk phases are considered. It is shown that the transfer of EGBE and EGPE in both CHCl3 and Ccl4 systems is controlled by the diffusion step even at high stirring speeds, whereas the transfer of acac in Ccl4 is controlled by the interfacial exchange step at high stirring speeds. An irreversible transfer has been also observed in the EGBE and EGPE systems at low stirring speeds.  相似文献   

6.
7.
The potential dependence of the steady-state current at a channel electrode has been calculated approximately. Six regions of behavior can be described from a consideration of the characteristic times of diffusion, fluid flow and electrochemical reaction. Wave shapes and half-wave potential shifts are as expected for amperometric cells under all values of the heterogeneous reaction rate constant, and for reversible electrochemical reactions in a coulometric cell. The wave adopts a peculiar shape for irreversible reactions at a coulometric electrode. This is caused by the inapplicability of the concept of mass transfer control in these systems.  相似文献   

8.
We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm-defined by the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are performed and compared to two analytical Markovian techniques: the method of images approximation (MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Commun. Math. Phys. 205, 97 (1999)] for fBm. When H < 1/3, which includes homogeneous SFD (H = 1/4), and heterogeneous SFD (H < 1/4), the WFA fails to agree with any temporal scale of the simulations and Molchan's long-time result. SFD systems are compared to their fBm counter parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same universality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.  相似文献   

9.
Understanding the factors that affect self-diffusion in isoreticular and multivariate (MTV) MOFs is key to their application in drug delivery, separations, and heterogeneous catalysis. Here, we measure the apparent self-diffusion of solvents saturated within the pores of large single crystals of MOF-5, IRMOF-3 (amino-functionalized MOF-5), and 17 MTV-MOF-5/IRMOF-3 materials at various mole fractions. We find that the apparent self-diffusion coefficient of N,N-dimethylformamide (DMF) may be tuned linearly between the diffusion coefficients of MOF-5 and IRMOF-3 as a function of the linker mole fraction. We compare a series of solvents at saturation in MOF-5 and IRMOF-3 to elucidate the mechanism by which the linker amino groups tune molecular diffusion. The ratio of the self-diffusion coefficients for solvents in MOF-5 to those in IRMOF-3 is similar across all solvents tested, regardless of solvent polarity. We conclude that average pore aperture, not solvent-linker chemical interactions, is the primary factor responsible for the different diffusion dynamics upon introduction of an amino group to the linker.  相似文献   

10.
We are interested in studying polymer diffusion across an interface by direct non-radiative energy transfer. In this paper we examine different approaches and techniques to analyze fluorescence decay data in such systems. One type of technique is used to calculate a parameter fm characterizing the extent of mixing. A second technique allows the concentration profile of the acceptor dyes at the interface to be evaluated. The third technique introduces the diffusion model into the decay profile analysis and yields the diffusion coefficient of the polymers. We found that when characterizing the extent of interdiffusion using the fraction parameter fm, ignorance of the detailed concentration gradient does not introduce significant error. The evaluation of diffusion coefficients is a complicated task due to the broad distribution of polymer molecules in latex films.  相似文献   

11.
Alginate has been widely used in cell microencapsulation and drug delivery systems in the form of gel beads or microcapsules.Although an alternative novel emulsification-internal gelation technology has been established and both the properties and the potential applications of the beads in drug delivery systems have been studied,the mechanism has not been well understood compared with the traditional droplet method(external gelation technology).On the basis of our previous knowledge that the novel technology is composed of complicatedly consecutive processes with multistep diffusion and reaction,and the diffusion of acetic acid across oil/water interface being the prerequisite that determines the occurrence and rate for the reactions and the structures and properties of final produced gel beads,a special emphasis was placed on the diffusion process.With the aid of diffusion modeling and simple experimental design,the diffusion rate constant and diffusion coefficient of acetic acid across oil/water interface were determined to be in the orders of magnitude of 10-6 and 10-16,respectively.This knowledge will be of particular importance in understanding and interpreting the formation,structure of the gel beads and the relationship between the structure and properties and guiding the preparation and quality control of the gel beads.  相似文献   

12.
Heterogeneous diffusion processes occur in many different fields such as transport in living cells or diffusion in porous media. A characterization of the transport parameters of such processes can be achieved by ensemble-based methods, such as pulsed field gradient nuclear magnetic resonance (PFG NMR), or by trajectory-based methods obtained from single-particle tracking (SPT) experiments. In this paper, we study the general relationship between both methods and its application to heterogeneous systems. We derive analytical expressions for the distribution of diffusivities from SPT and further relate it to NMR spin-echo diffusion attenuation functions. To exemplify the applicability of this approach, we employ a well-established two-region exchange model, which has widely been used in the context of PFG NMR studies of multiphase systems subjected to interphase molecular exchange processes. This type of systems, which can also describe a layered liquid with layer-dependent self-diffusion coefficients, has also recently gained attention in SPT experiments. We reformulate the results of the two-region exchange model in terms of SPT-observables and compare its predictions to that obtained using the exact transformation which we derived.  相似文献   

13.
Spatially addressable DNA nanostructures facilitate the self-assembly of heterogeneous elements with precisely controlled patterns. Here we organized discrete glucose oxidase (GOx)/horseradish peroxidase (HRP) enzyme pairs on specific DNA origami tiles with controlled interenzyme spacing and position. The distance between enzymes was systematically varied from 10 to 65 nm, and the corresponding activities were evaluated. The study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Strongly enhanced activity was observed for those assemblies in which the enzymes were closely spaced, while the activity dropped dramatically for enzymes as little as 20 nm apart. Increasing the spacing further resulted in a much weaker distance dependence. Combined with diffusion modeling, the results suggest that Brownian diffusion of intermediates in solution governed the variations in activity for more distant enzyme pairs, while dimensionally limited diffusion of intermediates across connected protein surfaces contributed to the enhancement in activity for closely spaced GOx/HRP assemblies. To further test the role of limited dimensional diffusion along protein surfaces, a noncatalytic protein bridge was inserted between GOx and HRP to connect their hydration shells. This resulted in substantially enhanced activity of the enzyme pair.  相似文献   

14.
Molecular diffusion has been considered to be an underlying mechanism for many of oil recovery processes like miscible and immiscible gas injection projects. Reliable estimation of the molecular diffusion coefficient as a transport property is therefore important in studying the performance of such systems. Interpretation of pressure-decay data has been traditionally used to estimate the molecular diffusion coefficient and usually to simplify the interpretation, its concentration dependency has been neglected. A pressure-decay model with concentration-dependent diffusion coefficient leads to a non-linear problem in which an analytical solution is difficult if not impossible to obtain. In this study, we used the Heat Integral Method (HIM) to solve the non-linear diffusion problem as a forward model. Using that forward model, we have developed a simple methodology for estimating the diffusion coefficient regardless of the form of function used for the concentration dependency of the molecular diffusion. Three different forms of functions for diffusion coefficient were considered. In its simplest form, the diffusion coefficient is set to be a constant value. In the two other forms, the diffusion coefficient was evaluated as a concentration-dependent two parameter equation using exponential and power-law functions, respectively. The proposed methodology is verified and tested using direct numerical solutions of the non-linear diffusion problem. Many numerical examples with a wide range of input parameters demonstrate the effectiveness of the proposed approach.  相似文献   

15.
A new simple method is developed for measuring surface diffusion coefficients Ds of gases adsorbed on heterogeneous surfaces, using the reversed-flow version of inverse gas chromatography. The Ds values are found in a time-resolved way, together with the corresponding adsorption energy values, the local adsorbed concentrations, and the local adsorption isotherm values. A relative dynamic adsorption rate constant, an adsorption/desorption rate constant, and a surface reaction rate constant are also found in the same experiment, together with the total diffusion coefficient of the gas in the solid bed. The method has been applied for carbon monoxide, oxygen gas, and carbon dioxide as adsorbates on 75% Pt+25% Rh catalyst supported on SiO2, at 593.8 K.  相似文献   

16.
Simple non-homogeneous irreversible reactions between a mobile reactant A, and immobile reactive groups R, in a solid yielding immobile product B, are considered. The possibilities are discussed of analysing such reactions when they are partially rate-controlled by the diffusion of A. It is shown that the effect of diffusion can be approximately described by a single parameter (“kinetic modulus”) up to a fairly marked degree of diffusion control; so that methods of kinetic analysis analogous to those used for reactions where the solid acts merely as a catalyst can be applied. The “effective reaction constant” previously defined for use as a kinetic modulus (analogous to the “Thiele modulus” of heterogeneous catalytic reactions) is considered further here. An improved, experimentally measurable kinetic modulus, based on the distribution of B across the solid, is also defined and studied.  相似文献   

17.
In order to investigate the electrochemical properties of porphyrin complexes species in biological systems, metalloporphyrin with different substitutes was applied to observe the process of heterogeneous electron transfer (ET) at the interface between two immiscible electrolyte solutions (ITIES) by scanning electrochemical microscopy (SECM). Experimental results demonstrated that the process of electron transfer was affected dramatically by the presence of different substitutes. Our results also show that the rate constant follows Bulter? Volmer kinetics where the rate increases with increasing force at the low driving force, and Marcus inverted region kinetics at the high driving force where the rate decreases.  相似文献   

18.
The diffusion resistance to monomers during heterogeneous polymerization of polyolefin particles may have a significant effect on the observed activity. This diffusivity is, in general, unknown. To gain more information on this diffusion resistance in such systems, PFG-NMR has been used to measure the diffusion of organic solvents in various systems of porous polymer particles. In such systems the complex morphology and geometry demands careful analysis of the PFG-NMR attenuation curve. In this study, effects from restricted diffusion, domains having different diffusivity, and internal magnetic field gradients are expected. Thus, the obtained diffusivities have to be considered carefully, and a way to analyze the data taking these effects into account is presented. Copyright 2001 Academic Press.  相似文献   

19.
The heterogeneous electron transfer rate constant (k s) of dimethylferrocene (DMFc) was estimated using cyclic voltammetric peak potential separations taken typically in a mixed diffusion geometry regime in a polyelectrolyte, and the diffusion coefficient (D) of DMFc was obtained using a steady-state voltammogram. The heterogeneous electron transfer rate constant and diffusion coefficient are both smaller by about 100-fold in the polymeric solvent than in the monomeric solvent. The results are in agreement with the difference of longitudinal dielectric relaxation time (τL) in the two kinds of solvents, poly(ethylene glycol) (PEG) and CH3CN, indicating that k s varies inversely with τL; k s is proportional to D of DMFc. Both D and k s of DMFc in PEG containing different supporting electrolytes and at different temperatures have been estimated. These results show that D and k s of DMFc increase with increasing temperature in the polyelectrolyte, whereas they vary only slightly with changing the supporting electrolyte. Received: 5 February 1998 / Accepted: 23 July 1998  相似文献   

20.
Using a coarse grained molecular dynamics model of a solvent-surfactant system, we study the effects of stretching on the permeability of water across a lipid bilayer. The density profile, free energy profile, diffusion profile, and tail ordering parameter were computed for a set of stretched membranes maintained at constant area. We computed the water permeability across each membrane using the inhomogeneous solubility-diffusion model first proposed by Marrink and Berendsen [J. Phys. Chem. 98, 4155 (1994)]. We find that even though the resistance to permeation profile shows a great deal of qualitative change as the membranes are stretched, the overall permeability remains nearly constant within the relevant range of stretching. This is explained by the fact that the main barrier to permeation, located in the densest section of the tails, is insensitive to increased area per lipid, as a result of competing effects. Expansion leads to thinning and a higher density in the tail region, the latter leading to an increase in the free energy barrier. However, this is compensated by the reduction in the transverse distance to cross and a larger diffusion coefficient due to increased disordering in the chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号