共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohapatra SC Mathur P 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,78(2):612-616
Monomeric Cu(II) and Cu(I) complexes bound to a tetradentate bis-benzimidazole diamide ligand N,N'-bis(N-octyl benzimidazolyl-2yl)(methyl)pentane diamide (O-GBGA) have been isolated and characterized. X-Band EPR spectra of the copper(II) complexes in CH2Cl2 were recorded in a frozen solution as solvent at liquid nitrogen temperature. Solution spectra typically indicate a d(x2-y2) ground state (g||>g⊥>2.0023) and show less than four nuclear hyperfine lines with broadening of g⊥ line in some cases, thus indicating distorted tetragonal geometry. One of the copper(II) complexes shows a five line N-SHF structure (16±1G) implying the binding of imine nitrogen of the benzimidazole to copper ion. α2 ranges from 0.57-0.97 indicating considerable amount of covalent character in Cu-L bond. Anodic shifts in E1/2 values indicate the retention of anion in the coordination sphere of Cu(II), E1/2 values becoming anodic in the order C6H5COO-相似文献
2.
Marco Bortoluzzi 《Journal of Coordination Chemistry》2019,72(2):309-327
Tetrahedral dibromomanganese(II) complexes having formulas [MnBr2{O?=?PR(NMe2)2}2] (R?=?NMe2 (1); Ph (2)) were isolated and characterized by single crystal X-ray diffraction. [MnBr2{O?=?P(NMe2)3}2] (1) crystallizes in the monoclinic C2/c space group. The asymmetric unit contains one half of the molecule with the Mn(II) atom in a distorted tetrahedral coordination. The intermolecular network of this coordination compound was studied by generating and inspecting its Hirshfeld surface, while the weak intramolecular hydrogen bonds were investigated computationally by AIM analysis in the gas phase and in solution. The Hirshfeld analysis was extended to the related [MnBr2{O?=?PPh(NMe2)2}2] complex (2). 相似文献
3.
Novel macrocyclic bis(disulfide)tetramine ligands and several Cu(II) and Ni(II) complexes of them with additional ligands have been synthesized by the oxidative coupling of linear tetradentate N2S2 tetramines with iodine. Facile demetalation of the Ni(II) oxidation products affords the free 20-membered macrocycles meso-9 and rac-9 and the 22-membered macrocycle 16, all of which are potentially octadentate N4S4 ligands. X-ray structure analyses reveal distinctly different conformations for the two isomers of 9; meso-9 shows a stepped conformation in profile with the disulfide groups corresponding to the rise of the step, whereas rac-9 exhibits a V conformation with the disulfide groups near the vertex of the V. No metal complexes of rac-9 have been isolated. Crystallographic studies of three Cu(II) complexes reveal that depending upon the size of the macrocyclic ligand and the nature of the additional ligands (I-, NCO-, and CH3CN), the Cu(II) coordination geometry shows considerable variation (plasticity), with substantial changes in the Cu(II)-disulfide bonding. Thus, a diiodide salt contains six-coordinate Cu(II) to which all four bridging disulfide sulfur atoms form strong equatorial bonds. In contrast, isocyanato complexes of the 20- and 22-membered macrocycles exhibit trigonal-bipyramidal Cu(II) and distorted cis-octahedral Cu(II) geometries, respectively, having only one and no short equatorially bound sulfur atoms. The coordination geometry of the latter complex can also be described as four-coordinate seesaw with two semicoordinated S(disulfide) ligands. Disulfide-->Cu(II) ligand-to-metal charge transfer absorptions of both isocyanato-containing Cu(II) species appear too weak to observe, probably because of poor overlap of the sulfur orbitals with the Cu(II) d-vacancy. The dual disulfide-bridged Ni(II) units of the crystallographically characterized octahedral Ni(II) complex of meso-9 with axial iodide and acetonitrile ligands promote substantial antiferromagnetic coupling (J = -13.0(2) cm-1). 相似文献
4.
《Journal of Inorganic and Nuclear Chemistry》1978,40(1):165-169
The bis(N-acetyl-l-alanine)copper(II) monohydrate for which magnetic data and electronic and IR spectra suggest a copper-acetate monohydrate type structure, was prepared. Substitution of the water molecule by some amines was made to investigate their effect on the amino acid coordination and on the geometry around the copper ion. For the adducts of monodentate heterocyclic amines such as N-methylpiperazine, piperidine, morpholine, pyridine, 3- and 4-methylpyridine (CuL2B2) and of bidentate amines such as piperazine, ethylenediamine, 2,2′- and 4,4′-bipyridine (CuL2B) in the solid state or chloroform solution, magnetism, electronic spectra (one d-d band in the 14,500–18,700 cm−1 spectral region, depending on the bascity or steric interference of the amines) and IR spectra suggest a square-planar or strongly distorted tetragonal arrangement around the copper ion with a CuN2O2 or CuN4 chromophore. For the Cu(N-acll-ala)2B2 (B N-methylpiperazine, piperidine and morpholine) adducts in chloroform solution in the presence of excess amine, electronic (two d-d bands) and IR spectra indicate tetragonal arrangement around the copper ion with CuN4O2 chromophore, while for the Cu(N-ac-l-ala)2 · o-phen adduct in the solid state and chloroform solution they suggest the presence of 6-coordinate cis-octahedral species, with CuN2O4 chromophores. In all the adducts studied the IR spectra exclude any interaction between the peptide group and the metal ion. 相似文献
5.
Two new cadmium(II) coordination polymers, {[Cd(L1)(tbta)]·H2O} n (1) and [Cd(L2)(tbta)] n (2) (L1 = 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H2tbta = tetrabromoterephthalic acid and L2 = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene) are obtained under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. The L1 and L2 ligands differ by subtle variation of substituents at semi-rigid bis(benzimidazole) bakcbones. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 displays a 2D {44.62} sql/Shubnikov tetragonal plane network. Complexes 1 and 2 possess high thermal stabilities and promising fluorescence behavior in the solid state. 相似文献
6.
By using the neutral bidentate nitrogen-containing ligands; bis(3,5-dimethyl-1-pyrazolyl)methane (L0″), bis(3,5-diisopropyl-1-pyrazolyl)methane (L1″), bis(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3″), and bis(3,5-ditertiary-butyl-1-pyrazolyl)methane (L4″), the copper(II) nitrato complexes [Cu(L0″)2(NO3)]NO3 (1NO3), [Cu(L0″)(NO3)2] (2), [Cu(L1″)(NO3)2] (3), [Cu(L3″)(NO3)2] (4), and [Cu(L4″)(NO3)2] (5), chloro complexes [Cu(L0″)2Cl]2(CuCl4) (6CuCl4), [Cu(L0″)2Cl]2(Cu2Cl6) (6Cu2Cl6), [Cu(L1″)Cl2] (7), and [Cu(L3″)Cl2] (8), nitrito complexes [Cu(L0″)(ONO)2] (9) and [Cu(L1″)(ONO)2] (10), and the complexes with perchlorate ions [Cu(L0″)2(CH3OH)](ClO4)2 (11ClO4) and [Cu(L1″)2(H2O)](ClO4)2 (12ClO4) were systematically synthesized and fully characterized by X-ray crystallography and by IR, far-IR, UV–Vis absorption, and ESR spectroscopy. In comparison with the obtained complexes with four bis(pyrazolyl)methanes having different bulkiness at pyrazolyl rings, the second coordination sphere effects on the ligands are discussed in detail. Moreover, the structures and physicochemical properties of these obtained complexes are compared with those of the related complexes with the neutral tridentate tris(pyrazolyl)methane ligand. 相似文献
7.
Novel bis(beta-diketones) linked by 2,2'-biphenyldiyl, 2,2'-tolandiyl, and 2,2'-bis(methylene)biphenyl moieties have been prepared. All are metalated readily by titanium(IV) isopropoxide, but the nature of the complexes formed depends on the linker structure. The biphenyl-bridged ligand gives only traces of a mononuclear complex, which is thermodynamically unstable with respect to oligomerization. The tolan-bridged ligand does form mononuclear complexes, but only as a mixture of geometric isomers. In contrast, the substituted 2,2'-bis-(2,4-dioxobutyl)biphenyl ligands, R2BobH2 (R = tBu, p-Tol), react with Ti(OiPr)4 to give, initially, a mixture of monomer and oligomers, which is converted quantitatively to monomer upon heating in the presence of excess Ti(OiPr)4. Only a single relative configuration of the biphenyl and bis(chelate) titanium moieties, established by crystallography of (tBu2Bob)Ti(O-2,6-iPr2C6H3)2 to be the (R)-/(S)- diastereomer, is observed. The kinetic and thermodynamic robustness of the (R2Bob)Ti framework is confirmed by reactions with Lewis acids. For example, (Tol2Bob)Ti(OiPr)2 reacts with trimethylsilyl triflate or triflic acid to substitute one or both of the isopropoxide groups with triflates without any redistribution or loss of the diketonate ligands. Cationic complexes can be prepared by abstraction of triflate from (Tol2Bob)Ti(OiPr)(OTf) with Na[B(C6H3(CF3)2)4]. For example, in the presence of diethyl ether, the crystallographically characterized [(Tol2Bob)Ti(OiPr)(OEt2)][B(C6H3(CF3)2)4], containing a rapidly dissociating ether ligand, is formed. 相似文献
8.
Three new ligands with an indole substituent tethered to a pyridylalkylamine or imidazolylalkylamine metal-binding domain have been prepared from tryptamine. Copper(II) complexes have been prepared and characterized, three by X-ray crystallography. Electrochemistry has been used to ascertain the mutual effects of the copper and indole redox centres upon each other. 相似文献
9.
Summary Copper(II) salts were reacted with two diamino-dithioether ligands, i.e. 1,3-di(o-aminophenylthio)propane (abbreviated H2L1) and 1,2-di(o-aminophenylthio)xylene (abbreviated H2L2). Mixtures of copper(I) and copper(II) complexes were obtained with Cl– and ClO
4
–
counterions. The major products were the copper(I) complexes, which were obtained pure after recrystallisation from MeCN-MeOH. The ligands lose two protons from the amine functions to form copper(I) complexes of general formula [CuL]X, where X = ClO
4
–
or Cl–. The complexes were oxidised to [CuL]X2 with H2O2 in DMF. Cu(NO3)2 on the other hand gave [CuH2LNO3]NO3. 相似文献
10.
Yu. I. Blokhin I. A. Khotina V. A. Karnoukhova I. A. Lyubimov A. M. Bagautdinov I. A. Abramov 《Russian Journal of Coordination Chemistry》2016,42(6):372-377
Copper(I) halide complexes with phenylphosphonous diamide ligand (L), C56H100Br4Cu4N8P4 (II) and C56H100Cu4I4N8P4 (III), were synthesized and studied by X-ray diffraction to determine their molecular and crystal structures (CIF files CCDC nos. 1426622 (II), 1426623 (III)). The prepared coordination compounds are cubane-like tetramers like L4Cu4X4. During the reaction, copper(I) is coordinated to the phosphorus atom of ligand L. The stability of the complexes depends considerably on the halogen atom. The iodide complexes are most stable during storage. 相似文献
11.
12.
Two new copper(II) complexes (I, II) with benzimidazole ligands have been synthesized and characterized by elemental analysis and X-ray single-crystal diffraction. Compound I is triclinic, P \(\bar 1\), a = 11.4205(6), b = 13.0956(7), c = 18.2305(9) Å, α = 85.960(1)°, β = 80.388(0)°, γ = 77.517(1)°, V = 2623.0(2) Å3, Z = 2; compound II is monoclinic, C2/c, a = 24.2684(11), b = 17.5247(8), c = 19.3149(15) Å, β = 122.710(1)°, V = 6911.9(7) Å3, Z = 4. In both compounds, Cu(II) atoms are coordinated by four benzimidazole nitrogen atoms in a slightly distorted tetrahedral fashion. 相似文献
13.
Two new zinc(II) complexes have been synthesized and studied by single crystal X-ray diffraction method: [Zn(L1)Cl2]·2DMF (1) and [Zn(L2)Cl2]·DMF (2) (L1 = 3,3′-bis(2-benzimidazolyl)-2,2′-dipyridine, L2 = 3,3′-bis[2-bis(2-ethylbenzimidazolyl)]-2,2′-dipyridine). Compound
1 is monoclinic, C2/c, a = 23.142(3) ?, b = 11.845(1) ?, c = 14.735(3) ?; compound 2 is orthorhombic, C2221, a = 12.140(7) ?, b = 16.283(9) ?, c = 16.51(1) ?. In both compounds, Zn(II) cations are coordinated by two chlorine atoms and two benzimidazole nitrogen atoms
in a slightly distorted tetrahedron fashion. Structural features responsible for fluorescent properties of the complexes are
discussed. 相似文献
14.
J Zhang W Gao X Lang Q Wu L Zhang Y Mu 《Dalton transactions (Cambridge, England : 2003)》2012,41(32):9639-9645
Bis(imino)aryl NCN pincer Ni(II) complexes 2,6-(ArN=CH)(2)C(6)H(3)NiBr (1: Ar = 2,6-Me(2)C(6)H(3); 2: Ar = 2,6-Et(2)C(6)H(3); 3: Ar = 2,6-(i)Pr(2)C(6)H(3)) were prepared via the oxidative-addition of Ni(0)(Ph(3)P)(4) with bis(N-aryl)-2-bromoisophthalaldimine. These nickel complexes were characterized by NMR and elemental analyses. Their solid molecular structures were established by X-ray diffraction analyses. The nickel metal centers adopt distorted square planar geometries with the bromine atoms acting as one coordinate ligands. The NCN pincer Fe(II) complexes 2,6-(ArN=CH)(2)C(6)H(3)Fe(μ-Cl)(2)Li(THF)(2) (4: Ar = 2,6-Me(2)C(6)H(3); 5: Ar = 2,6-Et(2)C(6)H(3); 6: Ar = 2,6-(i)Pr(2)C(6)H(3)) were synthesized by lithium salt metathesis reactions of the ligand lithium salts with FeCl(2). X-ray structure analyses of 4 and 5 revealed that the Fe(II) complexes are hetero-dinuclear with the iron atoms in trigonal bipyramidal environments. When activated with MAO, the nickel complexes are active for norbornene vinyl polymerization but are inert for butadiene polymerization. The Fe(II) complexes show moderate activities in butadiene polymerization when activated with alkylaluminium, affording the cis-1,4 enriched polymer. 相似文献
15.
Vanadium(V) complexes of the tridentate bis(phenolate)pyridine ligand H(2)BPP (H(2)BPP = 2,6-(HOC(6)H(2)-2,4-(t)Bu(2))(2)NC(5)H(3)) and the bis(phenolate)amine ligand H(2)BPA (H(2)BPA = N,N-bis(2-hydroxy-4,5-dimethylbenzyl)propylamine) have been synthesized and characterized. The ability of the complexes to mediate the oxidative C-C bond cleavage of pinacol was tested. Reaction of the complex (BPP)V(V)(O)(O(i)Pr) (4) with pinacol afforded the monomeric vanadium(IV) product (BPP)V(IV)(O)(HO(i)Pr) (6) and acetone. Vanadium(IV) complex 6 was oxidized rapidly by air at room temperature in the presence of NEt(3), yielding the vanadium(V) cis-dioxo complex [(BPP)V(V)(O)(2)]HNEt(3). Complex (BPA)V(V)(O)(O(i)Pr) (5) reacted with pinacol at room temperature, to afford acetone and the vanadium(IV) dimer [(BPA)V(IV)(O)(HO(i)Pr)](2). Complexes 4 and 5 were evaluated as catalysts for the aerobic oxidation of 4-methoxybenzyl alcohol and arylglycerol β-aryl ether lignin model compounds. Although both 4 and 5 catalyzed the aerobic oxidation of 4-methoxybenzyl alcohol, complex 4 was found to be a more active and robust catalyst for oxidation of the lignin model compounds. The catalytic activities and selectivities of the bis(phenolate) complexes are compared to previously reported catalysts. 相似文献
16.
Fry FH Spiccia L Jensen P Moubaraki B Murray KS Tiekink ER 《Inorganic chemistry》2003,42(18):5594-5603
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions). 相似文献
17.
Vesna ?aplar Zlata Raza Vladislav Tomiši? Josip Po?ar Mladen ?ini? 《Tetrahedron》2004,60(37):8079-8087
Silver(I) and copper(I) complexes of C2-symmetric bis(oxazoline) ligands were studied by UV, NMR, IR, EPR and ES-MS spectroscopies. The stability constants of the Ag-1a and Ag-1b complexes with 1:1 and 1:2 stoichiometries in acetonitrile were determined by NMR spectrometric titrations. The evidence of tetrahedral coordination for complex (Ag(1a)2(+ was obtained from the complexation induced shifts (CIS) and NOEs. Mass spectra revealed the Cu(II) mediated oxidation of methylene bridge in copper complexes of 1a and 1b, which was in accordance with the UV, NMR, IR and EPR findings. The efficiency of Cu(I) complexes of methylene-bridged 1,5-bis(oxazoline)s 1 as chiral catalysts in stereoselective cyclopropanation of styrene with ethyl diazoacetate, was compared to that of the dialkylmethylene-bridged 1,5-bis(oxazoline)s 2. 相似文献
18.
Gamez P Arends IW Reedijk J Sheldon RA 《Chemical communications (Cambridge, England)》2003,(19):2414-2415
[CuBr2(2,2'-bipyridine)] catalyses the selective and very mild aerobic oxidation of primary alcohols to aldehydes in acetonitrile:water (2:1) in the presence of 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) and a base as cocatalysts. 相似文献
19.
Martí I Ferrer A Escorihuela J Burguete MI Luis SV 《Dalton transactions (Cambridge, England : 2003)》2012,41(22):6764-6776
A family of ligands derived from bis(amino amides) containing aliphatic spacers has been prepared, and their protonation and stability constants for the formation of Cu(2+) complexes have been determined potentiometrically. Important differences are associated to both the length of the aliphatic spacer and the nature of the side chains derived from the amino acid. In general, ligands containing aliphatic side chains display higher basicities as well as stability constants with Cu(2+). In the same way, basicities and stability constants tend to increase when decreasing the steric hindrance caused by the corresponding side-chain. FT-IR, UV-vis and ESI-MS were used for analyzing the complex species detected in the speciation diagram. UV-vis studies showed the presence of different coordination environments for the copper(II) complexes. Complexes with different stoichiometries can be formed in some instances. This was clearly highlighted with the help of ESI-MS experiments. 相似文献
20.
A new class of dibenzofuran-bridged bis(amidoamine) and bis(ethylenediamine) ligands are used to prepare structurally-characterized dinuclear zinc and aluminium complexes. 相似文献