首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical conductivity, magnetization, and magnetoresistance of manganites La1 − x Ag x MnO3 have been investigated in the temperature range 78–300 K. The samples have been synthesized by the sol-gel method. At room temperature, the magnetic field of 0.6 T has no effect on the electrical conductivity. As the temperature decreases, an abrupt jump is observed in the magnetization curve due to the semiconductor-metal phase transition. This transition hardly affects the temperature dependence of the resistance.  相似文献   

2.
The features of the optical and magnetooptical properties of granular alloys with giant magnetoresistance in the IR region are examined in reference to the magnetorefractive effect and the equatorial Kerr effect. Calculations are performed within the semiclassical approximation with consideration of spin-dependent scattering in the bulk of the granules and on their surfaces (interfaces). The expressions obtained for σ xx(ω) and σ xy(ω) are found to be sensitive to scattering on the surfaces and in the bulk of the granules, as well as to granule size, the type of impurities trapped on the interfaces, the frequency of the incident light, and the external magnetic field. For granular thin films exhibiting giant magnetoresistance, the theory predicts significant relative changes in the optical reflection and transmission coefficients when the sample is magnetized to saturation (0.02% and 20%, respectively, for giant magnetoresistance of the order of 20%), as well as Kerr and Faraday effects that are nonlinear with respect to magnetization. Zh. éksp. Teor. Fiz. 116, 1762–1769 (November 1999)  相似文献   

3.
The magnetoresistance Δρ/ρ of single-crystal samples of praseodymium and neodymium hexaborides (PrB6 and NdB6) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB6 and NdB6 compounds. An analysis of the dependences Δρ(H)/ρ has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (−Δρ/ρ ∝ H 2), a linear positive contribution (Δρ/ρ ∝ H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB6 and NdB6 compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB6 and NdB6, ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility χloc has been estimated. It has been demonstrated that, in the temperature range T N < T < 20 K, the behavior of the local magnetic susceptibility χloc for the compounds under investigation can be described with good accuracy by the Curie-Weiss dependence χloc ∝ (T − Θ p )−1.  相似文献   

4.
A study is reported of the dependence of magnetoresistance Δρ/ρ on the square of magnetization σ 2 of the semiconducting spinelide Cu0.625Ga0.375Cr2Se4, which exhibits a low-temperature transition from long-range magnetic order (LRMO) to the spin glass (SG) state in strong magnetic fields. It is shown that at the freezing temperature T f the Δρ/ρ(σ 2) relations change their slope, and that below T f this slope is about one half that for T>T f. This finding, together with the earlier observation that the freezing temperature does not depend on the frequency of the ac magnetic field in which it was measured, suggests that the spin-glass phase consists of spins of individual Cr3+ ions, and that the SG-LRMO crossover is a phase transition. Fiz. Tverd. Tela (St. Petersburg) 40, 315–317 (February 1998)  相似文献   

5.
A procedure is proposed for precise scanning of the (B , B ) plane between the magnetic field projections that are perpendicular and parallel to (quasi-)two-dimensional layers when measuring their longitudinal and Hall magnetoresistances. Investigations of a n-In x Ga1−x As/GaAs double quantum well (x ≈ 0.2) performed using this procedure make it possible to reveal a number of the features of the magnetoresistance, which appear due to a complex energy spectrum of the double quantum well in a parallel field, and to separate them from the structures associated with the magnetic breakdown. The trajectories representing the features of the magnetoresistance in the (B , B ) plane are described by the semiclassical calculations of the quantization of the energy spectrum of the double quantum well under the action of the perpendicular field component. The structures appearing due to the magnetic breakdown are amplified with increasing the total magnetic field magnitude and, in the samples with low mobility, completely suppress the features caused by the motion of an electron with a constant pseudospin component. The peaks corresponding to the magnetic breakdown are split in a strong parallel field due to the spin splitting of the Landau levels. These splittings correspond to the effective Landé factor |g*| ≈ 3. Original Russian Text ? M.V. Yakunin, S.M. Podgornykh, V.N. Neverov, 2007, published in Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 1, pp. 241–249.  相似文献   

6.
Giant positive or negative magnetoresistance is calculated in a band model. The spectra of the band electrons in a two-sublattice antiferromagnetic intermetallic compound depend on the antiferromagnetism vector L(T,H). The metamagnetic transition to the ferromagnetic phase is accompanied by splitting with respect to the spin σ, displacement of the energy bands, and a decrease in the effective masses of the band electrons. This mechanism of giant negative magnetoresistance is also accompanied by an increase in the relaxation time τ. Scattering by chemical-bond fluctuations is considered as the main relaxation mechanism. Giant positive magnetoresistance results from a four-subband model of 4f and 5f intermetallic compounds. The electron effective masses m (J jT ) of the (j,σ) bands increase with the mean angular momentum J 1T (T,H) of an ion in the jth sublattice of 4(5)f ions. The thermodynamics of such a four-sublattice model, the nonlinear magnetization and magnetoresistance curves, and the nonmonotonic dependence of the specific heat C m(T,H) on the field H are calculated. Fiz. Tverd. Tela (St. Petersburg) 39, 1806–1814 (October 1997)  相似文献   

7.
Energy cascade rates and Kolmogorov’s constant for non-helical steady magnetohydrodynamic turbulence have been calculated by solving the flux equations to the first order in perturbation. For zero cross helicity and space dimensiond = 3, magnetic energy cascades from large length-scales to small length-scales (forward cascade). In addition, there are energy fluxes from large-scale magnetic field to small-scale velocity field, large-scale velocity field to small-scale magnetic field, and large-scale velocity field to large-scale magnetic field. Kolmogorov’s constant for magnetohydrodynamics is approximately equal to that for fluid turbulence (≈ 1.6) for Alfvén ratio 05 ≤r A ≤ ∞. For higher space-dimensions, the energy fluxes are qualitatively similar, and Kolmogorov’s constant varies asd 1/3. For the normalized cross helicity σc →1, the cascade rates are proportional to (1 − σc)/(1 + σc , and the Kolmogorov’s constants vary significantly with σcc.  相似文献   

8.
The results of experiment on the influence of a direct current and a low-frequency alternating current, as well as a magnetic field, on the microwave-range conductivity σ MW of Ln0.7Pb0.3MnO3 single crystals with giant magnetoresistance are presented. The greatest sensitivity of the samples toward the effects of a current is observed in the temperature range corresponding to the dc magnetoresistance maximum. The response signal of a sample in the microwave range to the effects of an alternating current of a low frequency f 0 has a nonlinear character. As f 0 is varied in a magnetic field, the amplitude of the response signal varies with the appearance of resonance peaks. The results obtained are interpreted within an approach based on the coexistence of two phases having different conductivities in the doped manganite crystals. This two-phase interpretation is supported by data from magneticresonance investigations, which demonstrate the existence of two magnetic phases over a broad temperature range in Ln0.7Pb0.3MnO3 single crystals. Fiz. Tverd. Tela (St. Petersburg) 41, 2007–2015 (November 1999)  相似文献   

9.
Magnetic flux trapping (MFT) in granular YBa2Cu3O7 − δ high-temperature superconductors (HTSCs) is studied. At T = 77.36 K, the dependence of the hysteresis of the transverse magnetoresistance on transport current I and the maximum value of external magnetic field H ext is found in the measurement cycle 0 → H extmax → 0. The dependences of the parameters characterizing MFT, namely, residual magnetoresistance, field H min at which the magnetoresistance is minimal, and the magnetoresistance at H ext = H min, on I and H extmaxare determined. MFT is found to occur in HTSC granules under the action of an external magnetic field exceeding the lower critical field of superconducting granules H c1A, and the transport current only weakly affects the magnitude of MFT.  相似文献   

10.
We have measured the Hall effect and the transverse magnetoresistance in NbSe3 single crystals. In the liquid helium temperature range we observed an absolute negative magnetoresistance (NMR) — the value of the resistance under magnetic field being much lower than that at zero field — in NbSe3 single crystals with a thickness less than 5 μm with the magnetic field oriented in the (b, c) plane. We show that this NMR effect is observed in the magnetic field range in which the Hall constant changes its sign. The results are qualitatively explained by the change of the surface scattering contribution to the magnetoconductance in the magnetic field range near the Hall voltage zero crossing.  相似文献   

11.
The results of investigating the temperature dependence of the resistivity, the differential magnetic susceptibility, and the magnetoresistance of a partially substituted perovskite Sm1−x SrxMnO3 (x=0.16–0.4) are presented. Colossal intrinsic magnetoresistance, reaching 90% in an external magnetic field of 30 kOe, is discovered in the compound with x=0.30 at 77 K. Fiz. Tverd. Tela (St. Petersburg) 39, 1831–1832 (October 1997)  相似文献   

12.
We study the effect of a weak nonlinearity in media on the linear regime of current flow in two-dimensional periodic structures with two equal component concentrations. We find that the asymptotic behavior of the electric field and current as functions of the distance between the angles in heterogeneous media is determined by the parameter h=σ 2/σ 1 (here σ 1 and σ 2 are the linear conductivities of the cells) and the external magnetic field B. This dependence leads to divergence of the higher-order moments of field and current at certain critical values h c and B c and to divergence of the response functions related to the higher-order moments. For square cells the effective nonlinear conductivity diverges at hh c, with . For structures of general shape we find the dependence of h c on the angles and the external magnetic field. We show that for a given structure the linear regime of current flow in the system can be reversibly transformed into a nonlinear one by varying the magnetic field strength. The critical field B c is approximately determined from the condition ω c τ∼1, where ω c and τ −1 are, respectively, the cyclotron frequency and the collision rate. Finally, we discuss the feasibility of detecting these effects experimentally. Zh. éksp. Teor. Fiz. 112, 643–660 (August 1997)  相似文献   

13.
The transformation of the band structure of LaCoO3 in the applied magnetic field has been theoretically studied. If the field is below its critical value B C ≈ 65 T, the dielectric band gap decreases with the field, thus giving rise to negative magnetoresistance that is highest at T ≃ 300–500 K. The critical field is related to the crossover between the low- and high-spin terms of Co3+ ions. The spin crossover results in an insulator-metal transition induced by an increase in the magnetic field.  相似文献   

14.
The current-voltage characteristics of granular YBa2Cu3O6.95 high-temperature superconductor samples have been measured at a temperature of 77.3 K in external transverse magnetic fields H ext with a strength of up to H ext ≈ 500 Oe for low transport current densities (0.1 A/cm2j ≤ 0.6 A/cm2). The current-voltage characteristics obtained have been used to construct dependences of the magnetoresistance ρ on the quantities j (ρ(j) Hext=const) and H ext(ρ(H ext) j = const). It has been revealed that the current and field dependences of the magnetoresistance exhibit anomalies at H extH c1g , where H c1g is the lower critical field of superconducting grains. A comparative analysis of the dependences ρ(j)H ext = const and ρ(H ext) j = const has made it possible to develop concepts regarding the influence of the processes of redistribution of the magnetic field between grain boundaries and superconducting grains on the transport and galvanomagnetic properties of granular high-temperature superconductors. It has been established that the field dependences of the magnetoresistance exhibit specific features associated with the beginning of penetration of Josephson vortices into grain boundaries in the magnetic field H c1J and with the breaking of a continuous chain of Josephson junctions in the magnetic field H c2J .  相似文献   

15.
The dependences of the electrical resistivity ρ and the Hall coefficient R on the magnetic field have been measured for single-crystal samples of the n-Bi0.93Sb0.07 semiconductor alloys with electron concentrations in the range 1 × 1016 cm−3 < n < 2 × 1018 cm−3. It has been found that the measured dependences exhibit Shubnikov-de Haas quantum oscillations. The magnetic fields corresponding to the maxima of the quantum oscillations of the electrical resistivity are in good agreement with the calculated values of the magnetic fields in which the Landau quantum level with the number N intersects the Fermi level. The quantum oscillations of the Hall coefficient with small numbers are characterized by a significant spin splitting. In a magnetic field directed along the trigonal axis, the quantum oscillations of the resistivity ρ and the Hall coefficient R are associated with electrons of the three-valley semiconductor and are in phase with the magnetic field. In the case of a magnetic field directed parallel to the binary axis, the quantum oscillations associated both with electrons of the secondary ellipsoids in weaker magnetic fields and with electrons of the main ellipsoid in strong magnetic fields (after the overflow of electrons from the secondary ellipsoids to the main ellipsoid) are also in phase. In magnetic fields of the quantum limit ħω c /2 ≥ E F, the electrical conductivity increases with an increase in the magnetic field: σ22(H) ∼ H k . A theoretical evaluation of the exponent in this expression for a nonparabolic semiconductor leads to values of k close to the experimental values in the range 4 ≤ k ≤ 4.6, which were obtained for samples of the semiconductor alloys with different electron concentrations. A further increase in the magnetic field results in a decrease of the exponent k and in the transition to the inequality σ22(H) ≤ σ21(H).  相似文献   

16.
Bianchi Type I barotropic perfect fluid cosmological model in presence of magnetic field, is investigated. To get the deterministic model, we have also assumed that σ 11 α θ where σ 11 is the eigen-value of shear tensor σ i j and θ the expansion in the model. The behavior of the model in presence and absence of magnetic field and singularities in the model are also discussed.  相似文献   

17.
We present measurements of the diagonal Rxx and off-diagonal Rxy magnetoresistance under quantum Hall conditions on several high electron mobility transistors (HEMT) based on InxGa1-xAs quantum wells. From the magnetoresistance tensor we obtain the longitudinal conductivity σ xx . We study the transport mechanisms near the σ xx minima at temperatures ranging between 2 K and 35 K; activated transport is the dominant mechanism for temperatures above 7 K while variable range hopping conductivity is significant for lower temperatures. We show that electron-electron correlations should be taken into account to explain the conductivity vs temperature behaviour below 5 K. Finally, we study the behaviour of the localization length as a function of Landau level filling and obtain a critical exponent γ = 3.45±0.15. Received 6 June 2001 and Received in final form 16 October 2001  相似文献   

18.
The magnetoresistance of lightly doped TmBa2Cu3Ox single crystals is investigated in the temperature range 4.2–300 K for magnetic fields up to 12 T. For the antiferromagnetic sample (x=6.3), when the current and field lie in the ab plane, the magnetoresistance is the sum of an anisotropic and a background component. The existence of the anisotropic component is attributed to the restructuring of the antiferromagnetic domain structure in a magnetic field. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 5, 350–355 (10 September 1999)  相似文献   

19.
The electrical conductivity of the family of Ce x Sr1?x MnO3 (x = 0.50, 0.67) alloys is studied in magnetic fields of up to 0.6 T in the temperature range 78–300 K. The semiconductor-metal phase transition is observed in unannealed samples with x = 0.5 and in both annealed and unannealed samples with x = 0.67. All samples exhibit giant negative magnetoresistance. The temperature dependence of the giant negative magnetoresistance effect, the dependence of the electrical resistivity on the magnetic field at 78 K, and the time dependence of the magnetoresistance at 78 K are measured for the first time. Some samples reveal the properties of spin glass and strong ferromagnets. The reproducibility of the data obtained for these samples depends on the prehistory of the samples, specifically on the conditions of annealing and exposure to a magnetic field.  相似文献   

20.
(La0.7Sr0.3MnO3) x /(YBa2Cu3O7) y composites were prepared by mixing La0.7Sr0.3MnO3 powders and the sol–gel-derived YBa2Cu3O7 matrix, followed by high-temperature calcinations. Their structural, magnetic properties and magnetoresistance effect have been investigated systematically. A giant positive magnetoresistance (PMR) at low magnetic field is observed at low temperatures. In the case of (La0.7Sr0.3MnO3)1/(YBa2Cu3O7)9 composite, the PMR achieves 260% under a magnetic field of 5800 Oe. However, the PMR value sharply decreases with increasing temperature and no magnetoresistance effects are found above metal-insulator transition temperature. The enhancement of spin-dependent scattering at the grain boundaries should be responsible for the observed PMR. In addition, the temperature dependence of resistance under magnetic field could be explained by the competition between diamagnetism and paramagnetism in YBCO phase. At low temperature, the diamagnetism is predominant over paramagnetism and the interface scattering between LSMO grains is enhanced correspondingly. As a result, the low-temperature resistance increases and large PMR appears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号