首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The paper describes a new source of surface organic radicals whose special feature is a low rate of the initiation of alkyl radicals in reactions of H atoms with the surface of alkanes. A special reactor design was used to accumulate radicals at room temperature and observe alkoxyl radicals RO by the EPR method. For this purpose, alkanes were deposited on aerosil and placed into an EPR cavity. Thanks to the large area of aerosil loads (~103 cm2), we were able to obtain a stable signal corresponding to a ~1017 total amount of alkoxyl radicals (the degree of surface coverage ~0.1%). When O2 was introduced into the reactor in concentrations of 1015–1016 cm?3, a sharp decrease in the signal from surface organic radicals was observed. The process was described as the first-order (RO) s + O2 → HO2 + ketone reaction with a 1.7 × 10?17 cm3 s?1 rate constant.  相似文献   

2.
The NMR spectra and the decay of a spin echo signal from 51V nuclei in Kagome-staircase Co3V2O8 (CVO) and Ni3V2O8 (NVO) single crystals are measured in the temperature range 30–300 K and a magnetic field H 0 = 20 kOe. The orientation dependences of the 51V NMR line shape are used to determine the electric field gradient (EFG) parameters, namely, quadrupole frequency ν Q and asymmetry parameter η. These parameters for NVO and CVO are ν Q = 180(10) kHz, η = 0.5(1) and ν Q = 130(10) kHz, η = 0.6(1), respectively. A comparison of the results of calculating EFG tensors with a point charge model and the NMR data indicates that the crystallographically equivalent vanadium atoms in the Ni3V2O8 and Co3V2O8 compounds differ in the EFG axis orientation. M3V2O8 crystals are found to have vanadium positions (V1, V2) with different orientations of the z axis, which specifies the direction of the principal value of EFG (V zz ): these orientations lie in the bc plane and make an angle of either +51(5)° (V1) or −51(5)° (V2) with axis c. In the temperature range 30–300 K, the EFG tensor components and the local symmetry of the charge surrounding of the vanadium positions in NVO and CVO oxides are found to change insignificantly.  相似文献   

3.
Crystals of the chalcopyrite family, AgGaSe2, AgGaS2, and CdGa2S4, doped with chromium ions have been investigated using high-frequency broad-band EPR spectroscopy in the range 65–530 GHz at T = 4.2 K. It has been revealed that, in the AgGaSe2 and AgGaS2 crystals, the Cr2+ ions occupy positions with orthorhombic and tetragonal symmetry, whereas the previously investigated CdGaS4 crystals contain only tetragonal centers. The observed spectra have been described in the framework of the spin-Hamiltonian formalism. Apart from the divalent chromium centers, the EPR lines attributed to non-Kramers ions are observed in the frequency range 300–450 GHz for all the crystals under investigation. The nature of these lines has been discussed.  相似文献   

4.
We have ground bulk samples to obtain nanoparticles of (Ga2S3)1–x (Eu2O3) x solid solutions, the sizes of which were determined using an atomic force microscope. The photoluminescence spectra of the nanoparticles were studied in the temperature interval 77–300 K. We have established the mechanisms for emission and transfer of energy from the matrix to the rare-earth ion, and we determined the Stokes shift (ΔS = 0.7 eV), the Huang–Rhys parameter (S = 16), and the optical phonon energy (ħ−ω = 23 meV).  相似文献   

5.
The spectra of complex permittivity of a Ba2Mg2Fe12O22 single crystal belonging to the family of Y-type hexaferrites have been measured over a wide temperature range (10–300 K) with the aim of determining the dynamic parameters of the phonon and magnetic subsystems in the terahertz and infrared frequency ranges (3–4500 cm−1). A factor-group analysis of the vibrational modes has been performed, and the results obtained have been compared with the experimentally observed resonances. The oscillator parameters of all nineteen phonon modes of E u symmetry, which are allowed by the symmetry of the Ba2Mg2Fe12O22 crystal lattice, have been calculated. It has been found that, at temperatures below 195 and 50 K, the spectral response exhibits new absorption lines due to magnetic excitations.  相似文献   

6.
Electron paramagnetic resonance (EPR) studies on a single crystal of diamagnetic compound La2Si2O7, potentially a phosphorescent/luminescent/laser material, with the Gd3+ ion substituting for the La3+ ion, were carried out at X-band (9.61 GHz) over the 4–295 K temperature range. The asymmetry exhibited by the Gd3+ EPR line positions for the orientations of the external magnetic field about the magnetic Z- and Y-axes in the ZY-plane was ascribed to the existence of monoclinic site symmetry at the site of the Gd3+ ion, as confirmed by the significant values of the spin Hamiltonian parameters g YZ , b 2 −1, b 4 m (m = 1, 3), b 6 m (m = 1, 3, 5), estimated by fitting all EPR line positions observed at room temperature for the orientation of the magnetic field in the magnetic ZX- and ZY-planes using a rigorous least-squares fitting procedure. At 8 K measurements were only carried out for orientation of B in the magnetic ZX-plane, due to difficulty in orientation of the crystal inside the cryostat, enabling estimation of all spin Hamiltonian parameters b n m except those characterized by negative m values and g YZ . The absolute sign of the zero-field splitting parameter b 2 0 was determined to be negative from the relative intensities of the lines at 8 K. Authors' address: Sushil K. Misra, Physics Department, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada  相似文献   

7.
Vortex excitations have been detected at temperatures both below and above the critical temperature when investigating local magnetic fields on the surface of a Bi2Sr2Ca2Cu3O10 single crystal by means of an electron paramagnetic resonance (EPR) probe. A thin layer of a diphenyl picrylhydrazyl organic radical deposited on the crystal surface is used as the EPR probe. A narrow EPR signal makes it possible to detect weak distortions of the magnetic field appearing at TT c. The analysis of the temperature dependences of the resonance field and the EPR linewidth is thebasis of the assumption of the vortex nature of magnetic excitations in this temperature range.  相似文献   

8.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

9.
Magnetic and kinetic properties as well as transmission and absorption spectra of Hg 1−x−y Mn x Fe ySe (0.09 ≤ x ≤ 0.099 and 0.001 ≤ y ≤ 0.01) crystals are investigated at H ≈ 0.5–6 kOe in the temperature range T = 77–300 K. The band parameters are determined on the basis of experimental data. It is found that in the crystals under study at T ≈ 300 K, electron scattering by polar optical phonons dominates, direct optical band-to-band transitions occur, and replacement of a part of Mn atoms by Fe for x + y = 0.1 results in an increase in Eg op with Fe content. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 35–39, March, 2007.  相似文献   

10.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

11.
The behavior of the relative permittivity ɛ/ɛ0 of PbZr1 − x Ti x O3 (PZT) solid solutions (0.495 ≤ x ≤ 0.51) in the temperature range of 100–300 K at frequencies from 1 × 10−2 to 2 × 107 Hz was investigated. Diffuse, strongly relaxing maxima at T = 230−260 K (x = 0.495−0.505) and 150–160 K (x = 0.510) were observed in the PZT studied. The relaxation processes are well described by the Vogel-Fulcher law, and the dielectric spectra are approximated by the Cole-Cole formula.  相似文献   

12.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

13.
Three different photomagnetic effects caused by ultraviolet light in paramagnetic crystals based on molecules of spiropyrans (Sp) Sp3Cr(C2O4)3 and SpI have been revealed and separated: (1) in the high-temperature range (30–300 K), the photomagnetic effect in Sp3Cr(C2O4)3 is determined by the charge transfer between chromium ions and spiropyran molecules; (2) in the low-temperature range (2 K), the photomagnetic effect in Sp3Cr(C2O4)3 is due to the photoisomerization of spiropyran molecules, the change in the crystal field, and the splitting of the levels of Cr3+ ions in zero field; and (3) in the temperature range 2–20 K, the generation of radiation-induced paramagnetic defects contributes to the magnetic moment of the organic sublattice Sp+.  相似文献   

14.
The electrical properties of a lithium heptagermanate (Li2Ge7O15) crystal have been studied in DC and AC measuring fields at temperatures from 500 to 700 K. In a DC field, a substantial decrease of electrical conductivity σ with time has been detected. On the basis of kinetic dependences σ(t), estimates of the charge carrier diffusion coefficient D have been obtained. In the frequency range 101–105 Hz, the spectra of complex impedance ρ*(f) have been measured. The analysis of diagrams in the complex plane (ρ″–ρ′) has been performed within the equivalent circuit approach. It has been shown that, in the considered temperature and frequency intervals, the electrical properties of Li2Ge7O15 crystals have been determined by the hopping conduction of interstitial lithium ions A Li and accumulation of charge carriers near the blocking Pt electrodes.  相似文献   

15.
The crystal and magnetic structure of the perovskite-like, oxygen deficient cobalt oxide YBaCo2O5.5 has been studied by means of neutron and X-ray diffraction in the 10–300 K temperature range. The magnetic ground state is characterized by a coexistence of two distinct antiferromagnetic phases. In the first one, the ionic moments of high-spin Co3+ ions in the pyramidal sites are ordered in a spiral arrangement, while octahedral sites are non-magnetic due to presence of low-spin Co3+ ions. The arrangement in the second phase is collinear of the G-type, with non-zero moments both in pyramidal (high-spin Co3+ ions) and octahedral sites (presumably a mixture of the low- and high-spin states). With increasing temperature, at 260–300 K, the system develops a gradual structural transformation, which is associated with appearance of spontaneous magnetic moment. This process is related to a thermally induced reversion of low- and high-spin states at the octahedral sites to the intermediate-spin Co3+ states, resulting in an insulator-metal transition at TC ≈ TIM ≈ 295 K.  相似文献   

16.
Ab initio quantum-chemical calculations of the (CF3CO2H2+3O2) and (CF3CO23O2) complexes were performed by the MP2 method. It was found that these complexes were characterized by low complex formation energies, of 2.97 and 1.72 kcal/mol, respectively. According to the MP2(full)/6-311++G(d, p) calculation data, the bridge stabilization of oxygen by linking with both the CF3CO2H2+ cation and CF3CO2 anion is much more favorable energetically. A study of the potential energy surface of the joint molecular system (CF3CO2H2+3O2…CF3CO2) shows that proton experiences activationless transfer from the cation to the 3O2 molecule accompanied by electron transfer from the CF3COO anion. An analysis of spin density distribution shows that two radicals are stabilized in the (CF3CO2….OOH….O=C(OH)CF3) complex in the triplet state observed on the potential energy surface.  相似文献   

17.
We present the results of experimental studies of the optical properties of cobalt-doped Cd x H1−x Se (x = 0.18) single crystals with cobalt ion concentrations of NCo = 5·1018, 5·1019, and 1·1020 cm−3 at T = 90 K and 300 K. The composition (x = 0.18) of the Cd x Hg1−x Se solid solution was selected so that the hypothetical resonance level is found on the bottom of the conduction band. We show that the cobalt ions in the mercury selenide can form a resonance donor level only for cobalt concentrations NCo < 5·1018 cm−3. For NCo ∼ 5·1018 cm−3, the cobalt ions substitute for mercury atoms, forming a solid solution and leading to an increase in the bandgap width and a change in the physical properties. The solubility of cobalt in the HgSe lattice can be greater than 5%–10%. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 1, pp. 73–77, January–February, 2007.  相似文献   

18.
Electron paramagnetic resonance (EPR) spectra of doped paramagnetic crystals LiLuF4:U3+ and LiYF4:Yb3+ have been investigated at a frequency of about 9.42 GHz in the temperature range of 10–20 K. The U3+ ion spectrum is characterized by g-factors g = 1.228 and g = 2.516, and contains the hyperfine structure due to the 235U isotope with nuclear spin I = 7/2 and natural abundance of 0.71%. The observed hyperfine interaction constants are A = 81 G and A = 83.8 G. Moreover, the spectrum reveals the well-resolved superhyperfine structure (SHFS) due to two groups of four fluorine ions forming the nearest surrounding of the U3+ ion. This SHFS contains up to nine components with the spacing between components being about 12.7 G. The SHFS is observed also in the EPR spectrum of the LiYF4:Yb3+ crystal; up to 17 components with spacing of about 3.7 G may be traced. Some parameters of the effective Hamiltonian of the SHF interaction are estimated, the contribution of covalent bonding of f-electrons with ligands into these parameters is discussed. Authors' address: Igor N. Kurkin, Kazan State University, Kremlevskaya ulitsa 18, Kazan 420008, Russian Federation  相似文献   

19.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

20.
The magnetic properties of the EuMn2O5 multiferroic (samples consisting of single crystals and ceramic samples) have been investigated by the muon-spin-relaxation (μSR) method in the temperature range of 10–300 K. Below the magnetic ordering temperature T N = 40 K, the loss of the polarization of muons and the effect of the external magnetic field have been observed. Both phenomena can be explained by an additional channel of the depolarization of muons owing to the appearance of muons in a medium with a low electron density due to the charge separation process (the redistribution of the electron density in the phase transition process). The “memory” phenomenon has been revealed in a sample in the external magnetic field; the memory relaxation time depends on the size of the structure units of the samples (single crystals or ceramic grains).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号