首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel isatin‐coumarin derivatives tethered through ethylene were designed, synthesized, and evaluated for their in vitro antimycobacterial activities against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant tuberculosis (MDR‐TB). All hybrids exhibited potential antimycobacterial activities against MTB H37Rv and MDR‐TB with minimum inhibitory concentration (MIC) ranging from 32 to 256 μg/mL. In particular, the hybrid 4h (MIC: 50 and 32 μg/mL) was most active against MTB H37Rv and MDR‐TB strains, which was 2 and >4 folds more potent than the first‐line antitubercular agents rifampicin (MIC: 64 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR‐TB, warrant further optimization.  相似文献   

2.
Mycobacterium tuberculosis FabH, an essential enzyme in the mycolic acid biosynthetic pathway, is an attractive target for novel anti-tubercolosis agents. Structure-based design and synthesis of 1-(4-carboxybutyl)-4-(4-(substituted benzyloxy)phenyl)-1H-pyrrole-2-carboxylic acid derivatives 7a-h, a subset of eight potential FabH inhibitors, is described in this paper. The Vilsmeier-Haack reaction was employed as a key step. The structures of all the newly synthesized compounds were identified by IR, 1H-NMR, 13C-NMR, ESI-MS and HRMS. The alamarBlue? microassay was employed to evaluate the compounds 7a-h against Mycobacterium tuberculosis H??Rv. The results demonstrate that the compound 7d possesses good in vitro antimycobacterial activity against Mycobacterium tuberculosis H??Rv (Minimum Inhibitory Concentration value [MIC], 12.5 μg/mL).These compounds may prove useful in the discovery and development of new anti-tuberculosis drugs.  相似文献   

3.
A series of novel moxifloxacin methylene and ethylene isatin derivatives with remarkable improvement in lipophilicity, compared to the parent moxifloxacin, was designed, synthesized and characterized by 1H NMR, MS and HRMS. These derivatives were initially evaluated for their in vitro antimycobacterial activity against M. smegmatis CMCC 93202. Compounds 3a―3f, 5a, 5f and 5j were chosen for the further evaluation of their in vitro activity against Mycobacterium tuberculosis(MTB) H37Rv ATCC 27294 and MDR-MTB 09710. All the target compounds[ minimum inhibitory concentration(MIC): 0.39―>16 μg/mL] were far more active than rifampin(MIC: 2.0―>256 μg/mL), but less active than moxifloxacin(MIC: 0.1―1.0 μg/mL) against the three tested strains. The most active compounds 3a and 3c were found to be 2―64 fold more potent than isoniazid and rifampin against M. smegmatis CMCC 93202, 2 fold more potent than rifampin against MTB H37Rv ATCC 27294, and 16―>64 fold more potent than ethambutol, isoniazid and rifampin against MDR-MTB 09710.  相似文献   

4.
A series of novel isatin‐ciprofloxacin hybrids inhaling oxime, semicarbazone, and thiosemicarbazone groups with hydrogen bonding capacity were designed, synthesized, and evaluated for their in vitro antitubercular activities against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant‐TB (MDR‐TB). All hybrids endowed with potential activities against the tested MTB H37Rv and MDR‐TB strains with minimum inhibitory concentration (MIC) in a range of 0.20 to 128 μg/mL. In particular, the most active hybrid 5e (MIC: 0.20 and 0.5 μg/mL) was four and two times more active than the parent ciprofloxacin (MIC: 0.78 μg/mL) and rifampicin (MIC: 0.39 μg/mL) against MTB H37Rv, and 4–>256 times more potent than the three references ciprofloxacin (MIC: 2.0 μg/mL), rifampicin (MIC: 32 μg/mL), and isoniazid (>128 μg/mL) against MDR‐TB. Thus, this kind of hybrids holds great promise as future anti‐TB agents against both drug‐sensitive and drug‐resistant MTB strains infection.  相似文献   

5.
A series of propylene‐tethered mono‐/bis‐isatin‐gatifloxacin hybrids 3a–f and 4a–f were designed, synthesized, and evaluated for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant tuberculosis (MDR‐TB) as well as cytotoxicity against VERO cell line. The results indicated that all hybrids exhibited promising anti‐mycobacterial activities against MTB H37Rv and MDR‐TB with MIC ranging from 0.25 to 16 μg/mL. In particular, the mono‐isatin‐gatifloxacin hybrid 3e (MIC: 0.25 and 0.25 μg/mL) was found to be most active against MTB H37Rv and MDR‐TB strains, which was twofold more active than the parent gatifloxacin (MIC: 0.5 μg/mL) and comparable with rifampicin ( RIF ) (MIC: 0.25 μg/mL) against MTB H37Rv, and 4‐ > 512 times more potent than the three references gatifloxacin (MIC: 1.0 μg/mL), RIF (MIC: 64 μg/mL), and isoniazid (>128 μg/mL) against MDR‐TB, could act as a starting point for further optimization.  相似文献   

6.
A series of novel heteronuclear 5‐fluoroisatin dimers 4a–j tethered through ethylene were designed, synthesized, and examined for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis H37Rv and multi‐drug resistant tuberculosis (MDR‐TB). All hybrids exhibited potential anti‐mycobacterial activities against the tested two strains with minimum inhibitory concentration (MIC) in a range of 25 to 256 μg/mL. In particular, the heteronuclear 5‐fluoroisatin dimer 4a (MIC: 25 and 32 μg/mL) was most active against Mycobacterium tuberculosis H37Rv and MDR‐TB strains, which was twofold and greater than fourfold more potent than rifampicin (MIC: 64 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR‐TB, warrant further optimization.  相似文献   

7.
Phenolic compounds are widely distributed in Nature and act as pharmacologically active constituents in many herbal medicines. They have multiple biological properties, most notably antioxidant, antibacterial and cytotoxic activities. In the present study an attempt to correlate the phenolic composition of leaf, flower and wood extracts of Piper imperiale, with antioxidant, antitubercular and cytotoxic activities was undertaken. The total phenol content ranged from 1.98 to 6.94 mg GAE/gDW among ethanolic extracts, and gallic acid, catechin, epicatechin, ferulic acid, resveratrol and quercetin were identified and quantified by HPLC. DPPH and ABTS assays showed high antioxidant activity of the leaf extract (EC(50ABTS) = 15.6 μg/mL, EC(50DPPH) = 27.3 μg/mL) with EC?? in the same order of magnitude as the hydroxyquinone (EC(50ABTS) = 10.2 μg/mL, EC(50DPPH) = 15.7 μg/mL). The flower extract showed strong antimicrobial activity against Mycobacterium tuberculosis H??Rv. All the extracts exhibited dose-dependent cytotoxic effects against MCF-7 cancer cells. This is the first time that a Piper extract has been found to be highly active against M. tuberculosis. This study shows the biological potential of Piper imperiale extracts and gives way to bio-guided studies with well-defined biological activities.  相似文献   

8.
In the present study, a series of new isoniazid-1,2,3-triazole conjugates ( 5a-k ) was synthesized via click chemistry approach. The newly synthesized compounds were assessed for their in vitro antitubercular and antimicrobial activities. The compound 5g has displayed potent antitubercular activity against Mycobacterium tuberculosis H37Rv (Mtb) with MIC value 1.56 μg/mL. The active compounds were screened for their cytotoxicity profile by MTT assay against RAW 264.7 cell line. The four compounds have shown good in vitro antimicrobial activities against both antibacterial and antifungal pathogens. A molecular docking study was accomplished to identify the probable mode of action of synthesized derivatives. These compounds have shown excellent binding affinity toward Enoyl-acp reductase (INHA) and DNA gyrase.  相似文献   

9.
A series of novel propylene‐tethered heteronuclear bis‐isatin derivatives were designed, synthesized, and assessed for their in vitro and anti‐mycobacterial activities. All hybrids exhibited considerable antibacterial and anti‐mycobacterial activities against Mycobacterium tuberculosis H37Rv and multi‐drug‐resistant tuberculosis (MDR‐TB) with minimum inhibitory concentration (MIC) ranging from 16 to 256 μg/mL. In particular, the heteronuclear bis‐isatin 4i (MIC: 25 and 16 μg/mL) was most active against M. tuberculosis H37Rv and MDR‐TB strains, which was fourfold and greater than eightfold more potent than the first‐line anti‐tubercular agents rifampicin (MIC: 64 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR‐TB, could act as a lead for further optimization.  相似文献   

10.
In search of novel anti tubercular agents, a series of twelve 4‐(substituted benzylidene)‐2‐p‐tolyloxazol‐5(4H)‐ones (5a – 5l) has been synthesized, characterised and subjected to evaluate their antitubercular activity for the first time against Mycobacterium tuberculosis H37Rv (ATCC 27294). The out‐put of these studies disclosed that all the synthesized target molecules of the series displayed good to moderate activity with MIC values ranging 2–32 μg/mL in comparison with the standard first line antitubercular drugs Rifampicin and Isoniazid. Compound 5e with three methoxy groups meta to each other, is the most distinctive compound identified amongst the series, because of its remarkable in vitro antitubercular activity and thus may act as a promising lead molecule for further explorations.  相似文献   

11.
A series of novel N′-([2-aryl-5-methyl-1,3-oxazole-4-yl]methylene)isonicotino/nicotino hydrazides 10a-l were prepared by the condensation reaction of 2-aryl-5-methyl-1,3-oxazole-4-carbaldehydes 8a-f with the corresponding isonicotino/nicotino hydrazides 9a/9b . The structures of the new compounds were elucidated by various spectroanalytical techniques, including IR, 1H NMR, 13C NMR, elemental (C,H,N), and mass analysis. All the newly prepared INH-1,3-oxazole hybrids were evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. Among all the synthesized hybrids, compounds 10c and 10i derivatives displayed highest antitubercular activity with minimal inhibitory concentration 1.56 μg/mL. Further, molecular docking studies against the InhA enzyme were carried out to understand the interactions between potent hybrids and the target enzyme. Thus, these kind hybrids have the potentiality for the discovery of new antitubercular agents for deployment in the control and eradication of tuberculosis.  相似文献   

12.
In a search for safer and potent antitubercular agents, here a library of newly substituted dioxoisoindolinylmethyl-triazolyl-N-phenylacetamide derivatives (5a–l) has been synthesized via click chemistry approach. All synthesized compounds were evaluated for their antitubercular activity against Mycobacterium tuberculosis H37Rv (MTB). Among the screened compounds, 5d, 5e, 5h, and 5l showed good antitubercular activity. The compounds 5d and 5l have shown very effective antitubercular activity against Mycobacterium tuberculosis H37Rv (MTB) with MIC 12.5?μg/mL. All the newly synthesized compounds were thoroughly characterized by 1H NMR, 13C NMR, and HRMS spectral data. We further performed exploratory docking studies on the crystal structure of Mycobacterium tuberculosis enoyl reductase to demonstrate the mechanism of antitubercular activity.  相似文献   

13.
A new class of diethylene glycol tethered moxifloxacin–isatin hybrids 5a–l was designed, synthesized, and evaluated for their in vitro antimycobacterial activity against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant tuberculosis (MDR‐TB) strains. Our results showed that all hybrids with higher lipophilicity than the parent moxifloxacin exhibited promising activity against the tested strains with minimum inhibitory concentration (MIC) in a range of 0.2–16 μg/mL. In particular, hybrid 5h (MIC: 0.20 and 0.5 μg/mL), which was found to be most active against MTB H37Rv and MDR‐TB, was twofold more potent than isoniazid (MIC: 0.39 μg/mL) against MTB H37Rv and ≥64‐fold more active than isoniazid and rifampicin (MIC: >128 and 32 μg/mL, respectively) against MDR‐TB.  相似文献   

14.
A new class of 1H ‐1,2,3‐triazole‐tethered 8‐OMe ciprofloxacin (8‐OMe CPFX) isatin hybrids 5a–l was designed, synthesized and screened for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis H37Rv and multi‐drug‐resistant tuberculosis (MDR‐TB). All targets (minimum inhibitory concentration (MIC): 0.20–8.0 μg/mL) exhibited promising inhibitory activity against MTB H37Rv and MDR‐TB. Among them, conjugate 5h (MIC: 0.20 μg/mL), was 2–16 times more potent in vitro than the references CPFX (MIC: 3.12 μg/mL), 8‐OMe CPFX (MIC: 1.56 μg/mL) and RIF (MIC: 0.39 μg/mL) against MTB H37Rv. The most potent hybrid 5l (MIC: 0.25 μg/mL) was 8–256 times more active than the three references (MIC: 2.0–64 μg/mL) against MDR‐TB. Both of them warrant further investigations.  相似文献   

15.
《合成通讯》2012,42(2):271-288
Abstract

In search of more potent new antitubercular agents, a library of novel piperazine tethered dimeric 1,2,3-triazoles were designed by assembling 1,2,3-triazoles and piperazine in a single molecular architectural framework. The titled compounds (3a–m) were synthesized by 1,3-dipolar cycloaddition of 1,4-di(prop-2-yn-1-yl)piperazine (1) and various azides (2a–m) using click chemistry approach with good yields. All the synthesized compounds (3a–m) have been screened for their in vitro antitubercular, antifungal and antioxidant activities against their respective strains. Among them, 3b, 3d, and 3i have revealed promising antitubercular activity against Mycobacterium tuberculosis (Mtb) H37Rv with MIC 12.5?µg/mL. Molecular docking results provided well-clustered solutions to the mode of binding for these molecules into the active site of Mtb enoyl reductase (InhA). In addition to this, most of synthesized compounds were found to have potential antifungal as well as antioxidant activity.  相似文献   

16.
A series of novel 5-chloro-2-(thiophen-2-yl)-7,8-dihydroquinoline-6-carboxamides was designed, synthesized, and evaluated for antitubercular activity. The required 5-chloro-2-(thiophen-2-yl)-7,8-dihydroquinoline-6-carboxylic acid intermediate was prepared by oxidizing the respective aldehyde with sodium chlorite and 30% H2O2. Further, the acid was coupled with various aryl, alkyl, and heterocyclic amines using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride and hydroxybenzotriazole to give the desired 5-chloro-2-(thiophen-2-yl)-7,8-dihydroquinoline-6-carboxamides in excellent yields. All the new compounds were characterized by their NMR and mass spectral analysis. Screening of all new compounds for in vitro antimycobacterial activity against M. tuberculosis H37Rv (Mtb) resulted in five analogs with MIC 3.12 µg/cm3 as promising antitubercular agents with lower cytotoxicity profiles.  相似文献   

17.
Prompted by our discovery of a new class of conformationally-locked indeno[2,1-c]quinolines as anti-mycobacterials, compounds 2a and 3a (Fig. 1; MIC < 0.39 μg mL(-1) and 0.78 μg mL(-1), respectively)(14) with a freely rotating C2-imidazolo substituent, we herein describe the synthesis of pentacyclic azole-fused quinoline derivatives 4 and 5, in which we have restricted the rotation of the C2-imidazolo moiety by fusing it to the adjacent quinoline-nitrogen to give a five-membered fused azole heterocycle. The idea of locking the flexibility of the system by conformational constraint was simply to reduce its entropy, thereby reducing the overall free-energy of its binding to the target receptor. Out of 22 different azole-fused indeno[2,1-c]quinoline derivatives, seven structurally distinct compounds, 9, 15, 17, 25, 27, 28 and 29, have shown 79-99% growth inhibition of Mycobacterium tuberculosis H37Rv at a fixed dose of 6.25 μg mL(-1). The efficacies of these compounds were evaluated in vitro for 8/9 consecutive days using the BACTEC radiometric assay upon administration of single dose on day one. Of these, two compounds, 9 and 28, inhibited growth of M. tuberculosis very effectively at MIC < 0.39 μg mL(-1) (0.89 μM and 1 μM, respectively). These active compounds 9, 15, 17, 25, 27, 28 and 29 were screened for their cytotoxic effect on mammalian cells (human monocytic cell line U937), which showed that the human cell survival is almost unperturbed (100% survival), except for compound 25, hence these new compounds with new scaffolds have been identified as potent anti-mycobacterials, virtually with no toxicity. Thus these "hit" molecules constitute our important "leads" for further optimization by structure-activity relationship against TB.  相似文献   

18.
A series of novel tetraethylene glycol tethered heteronuclear bis‐isatin derivatives 7a – l were designed, synthesized, and evaluated for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis (MTB) H37Rv and multidrug‐resistant TB (MDR‐TB) as well as cytotoxicity in VERO cell line. All hybrids exhibited potential anti‐mycobacterial activities against MTB H37Rv and MDR‐TB, and acceptable cytotoxicity. Among them, the heteronuclear bis‐isatin 7l [minimum inhibitory concentration (MIC): 16 and 16 μg/mL] was found to be most active against MTB H37Rv and MDR‐TB strains, which was 2‐fold and >8‐fold, respectively, more potent than were the first‐line anti‐tubercular agents rifampicin (MIC: 32 μg/mL) and isoniazid (MIC: >128 μg/mL) against MDR‐TB, also demonstrated acceptable cytotoxicity profile (CC50: 62.5 μg/mL), could act as a starting point for further optimization.  相似文献   

19.
A series of diethylene glycol tethered ciprofloxacin–isatin hybrids 5a–j were designed, synthesized, and evaluated for their in vitro antimycobacterial activity against both drug‐sensitive and multidrug‐resistant (MDR) Mycobacterium tuberculosis strains in this paper. The preliminary results revealed that all hybrids with greater lipophilicity than the parent ciprofloxacin displayed considerable activity against the tested strains with minimum inhibitory concentration (MIC) in a range of 1.56–64 μg/mL. In particular, hybrid 5f (MIC: 1.56 and 2 μg/mL) with low cytotoxicity in VERO cell line was comparable with the parent ciprofloxacin (MIC: 0.78 and 2 μg/mL) against M. tuberculosis H37Rv and MDR tuberculosis strains and ≥16‐fold more potent than isoniazid and rifampicin (MIC: >128 and 32 μg/mL, respectively) against MDR tuberculosis, suggesting that it may serve as a new and promising candidate for further study.  相似文献   

20.
Two series of pyrazinamide (PZA) derivatives have been synthesized and evaluated for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv. Some compounds exhibited minimum inhibitory concentration activity of 50–100 μg/mL, greater than the first line antituberculosis drug PZA in Alamar Blue assay (>100 μg/mL). The obtained activities can be considered promising results, which characterizes these compounds as good start points to development of new antitubercular agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号