首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dinuclear gem-dithiolato bridged compounds [Rh2(μ-S2Cptn)(cod)2] (1) (CptnS22− = 1,1-cyclopentanedithiolato), [Rh2(μ-S2Chxn)(cod)2] (2) (ChxnS22− = 1,1-cyclohexanedithiolato), [Rh2(μ-S2CBn2)(cod)2] (3) (Bn2CS22− = 1,3-diphenyl-2,2-dithiolatopropane) and [Rh2(μ-S2CiPr2)(cod)2] (4) (iPr2CS22− = 2,4-dimethyl-2,2-dithiolatopentane) dissolved in toluene in the presence of monodentate phosphine or phosphite P-donor ligands under carbon monoxide/hydrogen (1:1) atmosphere are efficient catalysts for the hydroformylation of oct-1-ene under mild conditions (6.8 atm of CO/H2 and 80 °C). The influence of the gem-dithiolato ligand, the P-donor co-catalyst and the P/Rh ratio on the catalytic activity and selectivity has been explored. Aldehyde selectivities higher than 95% and turnover frequencies up to 245 h−1 have been obtained using P(OMe)3 as modifying ligand. Similar activity figures have been obtained using P(OPh)3 although the selectivities are lower. Regioselectivities toward linear aldehyde are in the range 75–85%. The performance of the catalytic systems [Rh2(μ-S2CR2)(CO)2(PPh3)2]/PPh3 has been found to be comparable to the systems [Rh2(μ-S2CR2)(cod)2] at the same P/Rh ratio. The system [Rh2(μ-S2CBn2)(cod)2] (3)/P(OPh)3 has been tested in the hydroformylation-isomerization of trans-oct-2-ene. Under optimized conditions up to 54% nonanal was obtained. Spectroscopic studies under pressure (HPNMR and HPIR) evidenced the formation of hydrido mononuclear species under catalytic conditions that are most probably responsible for the observed catalytic activity.  相似文献   

2.
A biphasic catalysis system composed of ionic liquid and rhodium complexes with water-soluble or amphiphilic phosphine ligands bearing water-soluble groups of sodium sulfonate have been employed for hydroformylation of 1-hexene. The experimental results show that the activity is almost independent of the hydrotropicity of the phosphine ligands in BMI·BF4. In this system, the extraction of phosphine species by the organics from the IL phase was quite low but larger than that of rhodium species and showed rather good stability of catalytic activity. A slight decrease in the aldehyde n/i ratio during the catalyst reuse could be recovered, in part, by replenishing certain amount of ligand into the used catalyst system.  相似文献   

3.
A new class of chiral modular bidentate phosphonite ligands has been synthesized in good overall yields by using cheap trans-1,2-diaminocyclohexane and ferrocene as starting materials, and applied in the Rh(I)-catalyzed asymmetric hydroformylation of vinyl acetate and styrene to afford the corresponding optically active aldehydes with good regioselectivity (up to 16.9 b/l ratio) and moderate to good enantioselectivity (up to 83% ee). The substituents on the backbone of the ligands are found to exhibit a remarkable effect on both the regio- and enantioselectivity of the catalysis.  相似文献   

4.
Rhodium-catalyzed hydroformylation of 1,5-hexadiene to corresponding dialdehydes was investigated using tetraphosphorus ligands. These ligands showed a high regioselectivity for linear aldehydes (linear to branch ratio up to 98%) in very good yield (up to 87%). It was found that the introduction of the substituents at the ortho position of the biphenyl moiety has little effect on the regioselectivity and the electron-donating substituents retard the reaction somewhat.  相似文献   

5.
α- and β-C-allylgalactopyranosides 1c and 1d, α-C-allylazaglucopyranoside 1e and α-C-allylfruttofuranoside 1f were hydroformylated at low temperatures affording a mixture of linear and branched aldehydes in regioisomeric and diastereoisomeric ratios depending on the starting alkene. The results obtained have allowed us to study the influence of the different structural features of the sugar moiety on the regio- and diastereoselectivity of the hydroformylation reaction.  相似文献   

6.
We previously reported the easy access to mixed ferrocenediyl ligands bearing phosphine and phosphonite moieties. Using this strategy, a new enantiopure phosphine-menthylphosphonite ferrocenediyl has been synthesised. This mixed ligand leads to original unsymmetrical dinuclear rhodium coordination-complexes. One example of this new class of “quasi-close bridging A frame” dinuclear rhodium complexes, fully characterised by multinuclear 1H, 13C, 31P and 103Rh NMR and optical rotation measurements, is presented. Preliminary tests have shown an activity improvement in the hydroformylation of oct-1-ene using the phosphine-menthylphosphonite ferrocenediyl auxiliary compared to known phosphine-phosphonite ligands.  相似文献   

7.
The preliminary results of the hydroformylation of 2-phenylsulfonyl substituted norbornene and norbornadiene derivatives catalyzed by the unmodified Rh(CO)2acac system are presented. The reaction, occurring under standard oxo conditions, gives polyfunctionalized exo norbornene- and exo norbornanecarboxaldehydes. The effect of the phenylsulfonyl group has been evaluated: it has been found that the steric properties of the sulfonyl substituent, more than the electronic ones, influence the regioselectivity of the process.  相似文献   

8.
High linear alkenes (1-octene and 1-decene) have been hydroformylated using water-soluble rhodium complexes associated with sulfonated diphosphines in the presence of ionic surfactants or methanol. In all cases, the hydroformylation activities were higher than in experiments without additives. The selectivity in aldehydes was higher when we used cetyltrimethylammonium hydrogensulfate (CTAHSO4) as the surfactant or methanol as the co-solvent.  相似文献   

9.
Rhodium(II) complexes with dioximes [Rh(Hdmg)2(PPh3)]2 [I] (Hdmg=monoanion of dimethylglyoxime) and [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II] catalyse hydroformylation and hydrogenation reactions of 1-hexene at 1 MPa CO/H2 and 0.5 MPa H2 at 353 K, respectively. Hydroformylation with complex [I] produces 94% of aldehydes (n/iso=2.2) and 6% 2-hexene whereas the second catalyst [II] gives ca. 40% of aldehydes (n/iso=2.1) and 60% of 2-hexene. Corresponding Rh(III) complexes are inactive in hydroformylation except of RhH(Hdmg)2(PPh3) [III], which shows activity similar to [I]. Complexes [Rh(Hdmg)2(PPh3)]2 [I], [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II], RhH(Hdmg)2(PPh3) [III] and [Rh(Hdmg)2(PPh3)2]ClO4 [V] catalyse 1-hexene hydrogenation with an average TON ca. 18 cycles/mol [Rh]×min. Complex [II] has also been found to catalyse hydrogenation of cyclohexene, 1,3-cyclohexadiene and styrene.  相似文献   

10.
The synthetic approaches to cyclic phosphite and amido(diamido)phosphite ligands bearing the residues of electron withdrawing perfluorinated tails at the β-position to the phosphorus atom have been elaborated. Catalytic systems based on rhodium complexes of these ligands formed in situ using Rh(CO)2(acac) as a catalytic precursor demonstrate high activity in the hydroformylation of styrene along with good selectivity in respect to branched aldehyde. Quantum-chemical calculations proved that both the rate of the formation of branched alkyl complex, as well as its reactivity are influenced by the steric and electronic parameters in the same manner.  相似文献   

11.
报道了水溶性铑膦配合物组成的复合催化体系催化1-十二烯氢甲酰化反应中,双子表面活性剂[二溴化-(N,N,N′,N′-四甲基)-N,N′-二(十六烷基)-乙二铵]形成胶束的助催化作用.结果表明,在水/有机两相中,双子表面活性剂比单链表面活性剂CTAB具有更好加速催化反应的作用,并使烯烃氢甲酰化的区域选择性显著提高.这归因于双子表面活性剂有较低的cmc,可形成更加紧密规整的胶束结构,有利于增溶在胶束中的烯烃与铑催化剂配位和生成正构醛.  相似文献   

12.
In immobilizing the rhodium complexes [Rh(acac)(CO)(P)] (1) and [Rh(acac)(P)2] (2) (P = Ph2PCH2CH2Si(OMe)3) onto SiO2, acetylacetone is found to be released through protonation of the acac ligand by the acidic silica-OH groups. The resulting complexes [Rh(O-{SiO2}(HO-{SiO2})(CO)(P-{SiO2})] (1a) and [Rh(O-{SiO2})(HO-{SiO2})(P-{SiO2})2] (2a) were successfully tested with respect to their catalytic action on 1-hexene hydroformylation as well as benzene and toluene hydrogenation. The reaction outcome, viz. the formation of aldehydes versus isomerization, depends strongly on the presence and concentration of a phosphine co-catalyst. Thus, while 1a gave only a 17% yield of aldehyde in the absence of phosphines, the yield is increased to 54% in the presence of phosphinated silica P-{SiO2} or even 94% if PPh3 is added to the solution. Without extra added phosphine, both 1a and 2a effect mainly the isomerization of 1-hexene to 2-hexene. Pre-catalyst 1a catalyzes also the hydrogenation of benzene at 10.5 atm H2 and 90 °C to give cyclohexane with a TOF of 608 h−1.  相似文献   

13.
When 3-acetyl-1-allylpyrrole (1) was subjected under hydroformylation conditions, with Rh4(CO)12 as catalyst precursor, to 30 atm CO/H2 (1:1) total pressure and 140 °C, an equimolar mixture of the isomeric 5,6,7,8-tetrahydroindolizines 4′ and 5′ was obtained as the almost exclusive product. In both cases a domino hydroformylation/cyclization on the α pyrrole positions by the aldehyde 3 carbonyl group occurs which involves different intermediates: while 4′ is generated via the dihydroindolizine 4, 5′ forms via direct reduction of 8-hydroxytetrahydroindolizine 5, a structure that has never been observed before from 1-allylpyrroles under oxo conditions.  相似文献   

14.
Oxidative coupling of 3-(3-tert-butyl-4-hydroxyphenyl)propionic acid methyl ester (2) gave dimethyl 3,3′-(5,5′-di-tert-butyl-6,6′-dihydroxybiphenyl-3,3′-diyl)-dipropionate (1c), which upon phosphorylation/transesterification with a phosphochloridite derived from (R)-binaphthol, formed the new unsymmetrical binaphthol-bridged diphosphite 4. A rhodium catalyst based on 4 as ligand gave predominantly iso-selectivity in the hydroformylation of selected styrenes but opposite regioselectivity with 2,6-disubstituted derivatives. New chelate metal complexes (acac)RhL, PdCl2L and PtCl2L have been synthesized by reacting 4 with (acac)Rh(CO)2, PdCl2(MeCN)2 and PtCl2(COD), respectively. The structure of obtained compounds is determined based on 1H, 13C, 31P and 195Pt NMR spectroscopy and mass spectrometry data.  相似文献   

15.
The rhodium complex trans-[Rh(CO)(Hdpf-κP)(dpf-κ2O,P)] (1), (Hdpf = 1′-(diphenylphosphino)ferrocenecarboxylic acid) was used as an efficient and recyclable catalyst for 1-hexene hydroformylation producing ca. 80% of aldehydes at 10 atm CO/H2 and 80 °C. After the reaction, unchanged complex 1 was separated from the reaction mixture and used again three times with the same catalytic activity. The effect of modifying ligands, phosphines and phosphites, on the reactivity of 1 was investigated. The active catalytic systems containing 1 or trans-[Rh(CO)(L)(dpf-κ2O,P)] (2) were formed in situ from acetylacetonato rhodium(I) precursors [Rh(CO)2(acac)] (3) or [RhL(CO)(acac)] (4) and Hdpf or Medpf (L = phosphine, Medpf = methyl ester of Hdpf).  相似文献   

16.
New modular H8-BINOL-based phosphite ligands have been synthesized. High activity and regioselectivity has been achieved in the rhodium-catalyzed isomerization-hydroformylation of internal olefins. The active catalysts have been characterized by insitu NMR studies.  相似文献   

17.
The kinetic study of the hydroformylation of styrene catalysed by the rhodium/1,3,5-triphenyl-1H-phosphole (TPP) system has been facilitated by the fact that a catalytic system having two TPP ligands per Rh atom is maintained all along the catalytic cycle and no dissociation of a TPP ligand has to be considered during this cycle. This has allowed us to propose a model of mechanism with an association complex between the styrene and the unsaturated HRh(CO)(TPP)2 species. An analytical equation of the reaction rate has been established which acceptably characterises the behaviour of the reaction rate according to the concentration of the various species. This study reveals that the selectivity between linear and branched alkyl-rhodium is under thermodynamic control and the reversibility of the transformation of the alkyl into acyl-rhodium isomers has not clearly been established but suggested by the observations. An inhibiting effect of the produced aldehydes, through complexation with rhodium has also been put in evidence. This study emphasizes also the complex role of the CO and H2 partial pressures on the rate of reaction. A single catalytic cycle, only differentiated by the formation of linear or branched aldehydes, based on these observations and consistent with the kinetic equation is proposed.  相似文献   

18.
The complexes RhH(CO)L3, where L = PPh3, P(m-C6H4SO3Na)3 (TPPTS), and (C6H5)2P(m-C6H4SO3Na) (TPPMS) were used as catalyst precursors for a comparative study of the catalytic hydroformylation of several C6 alkenes and alkene mixtures under moderate reaction conditions in homogeneous (PPh3) and aqueous-biphasic (TPPTS, TPPMS) media. The biphasic systems are efficient for the hydroformylation of hex-1-ene, 2,3-dimethyl-1-butene, styrene, cyclohexene, and mixtures thereof, in water/n-heptane at 80 °C. The main problem associated with these catalysts is their tendency to promote alkene isomerization if the effective syngas concentration in the liquid phases is low, but this side-reaction can be suppressed by using higher CO/H2 pressures (54 atm). The selectivity of both water-soluble catalysts for linear products of hex-1-ene and for branched products of styrene is modest in comparison with the homogeneous system, which may limit their utility for classical oxo uses, but this is not a disadvantage for other interesting applications related to the hydroformylation of alkene mixtures and particularly to naphtha upgrading where linear and branched products are equally useful. The catalysts can be recycled without significant loss of activity and are resistant to the presence of benzothiophene in the mixture.  相似文献   

19.
The use of salts of secondary and primary amines with different inorganic and organic acids in hydroaminomethylation enables the quantitative conversion of 1-octene with high selectivity for saturated amines. We propose that a cationic rhodium species is formed under the acidic conditions which catalyses the hydrogenation of the enamine or imine formed subsequently. Thus the use of acids and amine salts enables the hydroaminomethylation of long-chain alkenes under aqueous, biphasic conditions with quantitative conversions and short reaction times.  相似文献   

20.
Four rhodium-based catalyst systems 1, 2, 3, and [Rh(OAc)2]2/PPh3 have been used in the hydroformylation of 1-hexene, styrene and some phosphino-, amino- and amido-alkenes. In general the catalysts showed very similar reactivity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号