共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrahedral cobalt(II) complex [(Tp(Ph,Me))CoCl] (Tp(Ph,Me) = hydrotris(3,5-phenylmethylpyrazolyl)borate) was combined with several hydroxypyridinone, hydroxypyridinethione, pyrone, and thiopyrone ligands to form the corresponding [(Tp(Ph,Me))Co(L)] complexes. X-ray crystal structures of these complexes were obtained to determine the mode of binding for each ligand L. The structures show that the [(Tp(Ph,Me))Co(L)] complexes are pentacoordinate complexes, with a general tendency toward square pyramidal geometry. The electronic, EPR, and paramagnetic NMR spectroscopy of the [(Tp(Ph,Me))Co(L)] complexes have been examined. The frozen-solution EPR spectra are indicative of pentacoordination in frozen solution, while the NMR indicates some dynamics in ligand binding. The findings presented here suggest that [(Tp(Ph,Me))Co(L)] complexes can be used as spectroscopic references for investigating the mode of inhibitor binding in metalloproteinases of medicinal interest. Potential limitations when using cobalt(II) model complexes are also discussed. 相似文献
2.
Sucha Sudarsanam G. Duke Virca Carl J. March Subhashini Srinivasan 《Journal of computer-aided molecular design》1992,6(3):223-233
Summary We have developed an approach to search for molecules that can be used as lead compounds in designing an inhibitor for a given proteolytic enzyme when the 3D structure of a homologous protein is known. This approach is based on taking the cast of the binding pocket of the protease and comparing its dimensions with that of the dimensions of small molecules. Herein the 3D structure of papain is used to model cathepsin L using the comparative modeling technique. The cast of the binding pocket is computed using the crystal structure of papain because the structures of papain and the model of cathepsin L are found to be similar at the binding site. The dimensions of the cast of the binding site of papain are used to screen for molecules from the Cambridge Structural Database (CSD) of small molecules. Twenty molecules out of the 80 000 small molecules in the CSD are found to have dimensions that are accommodated by the papain binding pocket. Visual comparison of the shapes of the cast and the 20 screened molecules resulted in identifying brevotoxin b, a toxin isolated from the red tide dinoflagellate Ptycho brevis (previously classified as Gymonodium breve), as the structure that best fits the binding pocket of papain. We tested the proteolytic activity of papain and cathepsin L in the presence of brevotoxin b and found inhibition of papain and cathepsin L with Kis of 25 M and 0.6 M, respectively. We also compare our method with a more elaborate method in the literature, by presenting our results on the computer search for inhibitors of the HIV-1 protease. 相似文献
3.
Christopher P. Gordon Neal Dalton Nicholas Vandegraaff John Deadman David I. Rhodes Jonathan A. Coates Stephen G. Pyne Renate Griffith John B. Bremner Paul A. Keller 《Tetrahedron》2018,74(12):1253-1268
As of mid-2017, only one structure of the human immunodeficiency virus (HIV) integrase core domain co-crystallised with an active site inhibitor was reported. In this structure (1QS4), integrase is complexed with a diketo-acid based strand-transfer inhibitor (INSTI). This structure has been a preferred platform for the structure-based design of INSTIs despite concerns relating to structural irregularities arising from crystallographic packing effects. A survey of the current pool of 297 reported integrase catalytic core structures indicated that the anatomy of the active site in the complex structure 1QS4 exhibits subtle variations relative to all other structures examined. Consequently, the 1QS4 structure was employed for docking studies. From the docking of twenty-seven allyltyrosine analogues, a 3-point inhibitor binding motif required for activity was established and successfully utilised in the development of a tripeptide displaying an EC50 value of 10 ± 5 μM in HIV infected human T-cells. Additional docking of “in-house” compound libraries unearthed a methyl ester based nitrile derivative displaying an IC50 value of 0.5 μM in a combined 3′-processing and strand-transfer assay. 相似文献
4.
Unlike metal pipes, high density polyethylene (HDPE) pipes are not susceptible to erosion and corrosion. However, the most important mechanical feature of the HDPE pipes is that this material creeps even at room temperature. Therefore, it is essential to study the creep behavior of this material in order to develop a model. In this paper, creep behavior of HDPE at different temperature and stress levels has been experimentally studied to obtain the creep constitutive parameters of the material. These parameters are used to predict the creep behavior of different structures such as HDPE pipes. For this purpose, a number of specimens have been machined from industrial manufactured pipe walls. Uniaxial creep tests have been carried out and creep strain curves with time for each test were recorded. Then, a constitutive model is proposed for HDPE based on the experimental data and optimization methods. The results of this model have been compared with the test data and good agreement is observed. The developed constitutive model and reference stress method (RSM) were used to produce graphs which provide optimum creep lifetime and design conditions for HDPE pipes that are subjected to combined internal pressure and rotation. These graphs can facilitate the design process of HDPE pipes. 相似文献
5.
Theoretical calculation and prediction for experimental design to obtain spin crossover complexes 下载免费PDF全文
Farsheed Shahbazi‐Raz Maryam Adineh Nasser Safari Mansour Zahedi 《International journal of quantum chemistry》2016,116(15):1179-1186
DFT methods were utilized to study SCO complexes. [Fe(2btz)2(NCX)2] (2btz = 2,2′‐bithiazoline, X = S ( 1 ) and Se ( 2 )), [Fe(phen)2(NCX)2] (phen = 1,10‐phenantroline, X = S ( 3 ) and Se ( 4 )), and [Fe(bpy)2(NCS)2] ( 5 ) (bpy = 2,2′‐bipyridine) compounds, which have experimentally shown SCO behavior, were calculated. B3LYP, B3LYP*, OPBE, and OLYP with 6‐31G* and 6‐311 + G** basis sets were employed to calculate the ΔEHS/LS energy gap as a clue to find complexes with SCO behavior. It is found that calculated result by B3LYP* with c3 = 0.14 and OPBE methods and 6‐31G* basis set are in agreement with experimentally observed SCO complexes. Then, newly designed Fe(N‐N)2(X)2 complexes, where N‐N are bidentate nitrogen donor chelating ligands and X= SCN‐, SeCN‐, Cl‐, Br‐, I‐, were chosen to see their potential to be SCO compounds. ΔEHS/LS for potential SCO complexes are estimated from 0.8 to 6.5 kcal/mol in B3LYP* and 0.6–5.7 kcal/mol in OPBE. These calculations suggest [Fe(bpy)2(NCSe)2], [Fe(5dmbpy)2(NCS)2], and [Fe(3‐BrPhen)2(NCSe)2] compounds have the ability to show SCO behavior. © 2016 Wiley Periodicals, Inc. 相似文献
6.
A new chiral auxiliary, (+/-)-N,N-dimethyl-1-(2,5-dimethylphenyl)ethylamine, was designed and synthesized in two steps from 1-acetyl-2,5-dimethylbenzene. Its cyclopalladated dimeric complex could be efficiently resolved via the formation of (S)-prolinate derivatives. Both hand forms of the complex could be obtained in similar yields. Despite the enormous inter-chelate steric constraints, the bulky monodentate ligand 3,4-dimethyl-1-phenylphosphole (DMPP) is able to coordinate regiospecifically to the orthopalladated 2,5-dimethylbenzylamine unit trans to the NMe(2) group. Compared to its naphthylamine analogue, the orthopalladated 2,5-dimethylbenzylamine complex exhibits a significantly higher stereoselectivity in the chiral template promoted asymmetric cycloaddition reaction between DMPP and ethyl vinyl ketone. 相似文献
7.
McAllister KA Zou H Cochran FV Bender GM Senes A Fry HC Nanda V Keenan PA Lear JD Saven JG Therien MJ Blasie JK DeGrado WF 《Journal of the American Chemical Society》2008,130(36):11921-11927
We have developed a computational design strategy based on the alpha-helical coiled-coil to generate modular peptide motifs capable of assembling into metalloporphyrin arrays of varying lengths. The current study highlights the extension of a two-metalloporphyrin array to a four-metalloporphyrin array through the incorporation of a coiled-coil repeat unit. Molecular dynamics simulations demonstrate that the initial design evolves rapidly to a stable structure with a small rmsd compared to the original model. Biophysical characterization reveals elongated proteins of the desired length, correct cofactor stoichiometry, and cofactor specificity. The successful extension of the two-porphyrin array demonstrates how this methodology serves as a foundation to create linear assemblies of organized electrically and optically responsive cofactors. 相似文献
8.
D. Gambino C. Kremer S. Cartesio A. León E. Kremer 《Journal of Radioanalytical and Nuclear Chemistry》1989,136(5):341-351
The strong chemical resemblance between Tc and Re is applied to design and evaluate experiments with99mTc complexes. A combination of spectrophotometric and electrophoretic techniques allows to propose the formula [TcO2/amine/2]+ for compounds prepared by reduction of99mTcO
4
–
with Zn /solid phase/ in presence of several /bidentate/ amines. 相似文献
9.
The quantitative analysis of protein-protein and protein-peptide complexes is of fundamental importance in biochemistry. We report here that nickel-catalyzed proximity biotinylation and Ru(II)(bpy)(3)(2+)-mediated oxidative crosslinking can be used to measure the equilibrium dissociation constant and stoichiometry of protein complexes. Only small amounts of protein are required, neither of the binding partners must be immobilized on a surface, and no special instrumentation is necessary. This chemistry should provide a useful complement to existing methods for the analysis of protein-protein and protein-peptide interactions. 相似文献
10.
Factor Xa is a serine protease which activates thrombin and plays a key regulatory role in the blood-coagulation cascade. Factor Xa is at the crossroads of the extrinsic and intrinsic pathways of coagulation and, hence, has become an important target for the design of anti-thrombotics (inhibitors). It is not known to be involved in other processes than hemostasis and its binding site is different to that of other serine proteases, thus facilitating selective inhibition. The design of high-affinity selective inhibitors of factor Xa requires knowledge of the structural and dynamical characteristics of its active site. The three-dimensional structure of factor Xa was resolved by X-ray crystallography and refined at 2.2 Å resolution by Padmanabhan and collaborators. In this article we present results from molecular dynamics simulations of the catalytic domain of factor Xa in aqueous solution. The simulations were performed to characterise the mobility and flexibility of the residues delimiting the unoccupied binding site of the enzyme, and to determine hydrogen bonding propensities (with protein and with solvent atoms) of those residues in the active site that could interact with a substrate or a potential inhibitor. The simulation data is aimed at facilitating the design of high-affinity selective inhibitors of factor Xa. 相似文献
11.
12.
Salib IG Kolmakov GV Bucior BJ Peleg O Kröger M Savin T Vogel V Matyjaszewski K Balazs AC 《Langmuir : the ACS journal of surfaces and colloids》2011,27(22):13796-13805
Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N(in) and N(out), the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N(out), with the higher value of N(out) providing a stronger material. We also find that, if N(in) is smaller than N(out), the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. 相似文献
13.
14.
Platinum-based anticancer drugs, including cisplatin and its analogues, have played important roles in the clinical treatment of solid tumors over the past 38 years. However, poor selectivity, high toxicity and intrinsic or acquired drug resistance profoundly limit their application, which encourages the development of novel transition metal-based anticancer agents with different mechanisms of action. To this end, transition metal complexes that can simultaneously act on more than one target, termed as single-molecule multi-targeting complexes, have attracted increasing attention because of their enhanced efficacy and diminished chance of drug resistance. In this review, we systematically discuss the recent progress in the development of platinum- and ruthenium-based anticancer agents, in particular the rational design of platinum and ruthenium complexes with multi-targeting features. 相似文献
15.
Raebiger JW Miedaner A Curtis CJ Miller SM Anderson OP DuBois DL 《Journal of the American Chemical Society》2004,126(17):5502-5514
A series of [Pd(diphosphine)(2)](BF(4))(2) and Pd(diphosphine)(2) complexes have been prepared for which the natural bite angle of the diphosphine ligand varies from 78 degrees to 111 degrees. Structural studies have been completed for 7 of the 10 new complexes described. These structural studies indicate that the dihedral angle between the two planes formed by the two phosphorus atoms of the diphosphine ligands and palladium increases by over 50 degrees as the natural bite angle increases for the [Pd(diphosphine)(2)](BF(4))(2) complexes. The dihedral angle for the Pd(diphosphine)(2) complexes varies less than 10 degrees for the same range of natural bite angles. Equilibrium reactions of the Pd(diphosphine)(2) complexes with protonated bases to form the corresponding [HPd(diphosphine)(2)](+) complexes were used to determine the pK(a) values of the corresponding hydrides. Cyclic voltammetry studies of the [Pd(diphosphine)(2)](BF(4))(2) complexes were used to determine the half-wave potentials of the Pd(II/I) and Pd(I/0) couples. Thermochemical cycles, half-wave potentials, and measured pK(a) values were used to determine both the homolytic ([HPd(diphosphine)(2)](+) --> [Pd(diphosphine)(2)](+) + H*) and the heterolytic ([HPd(diphosphine)(2)](+) --> [Pd(diphosphine)(2)](2+) + H(-)) bond-dissociation free energies, Delta G(H*)* and Delta G(H-)*, respectively. Linear free-energy relationships are observed between pK(a) and the Pd(I/0) couple and between Delta G(H-)* and the Pd(II/I) couple. The measured values for Delta G(H*)* were all 57 kcal/mol, whereas the values of Delta G(H-)* ranged from 43 kcal/mol for [HPd(depe)(2)](+) (where depe is bis(diethylphosphino)ethane) to 70 kcal/mol for [HPd(EtXantphos)(2)](+) (where EtXantphos is 9,9-dimethyl-4,5-bis(diethylphosphino)xanthene). It is estimated that the natural bite angle of the ligand contributes approximately 20 kcal/mol to the observed difference of 27 kcal/mol for Delta G(H-)*. 相似文献
16.
Qi Dai Xiaoqing Liu Lihua Li Yuhua Yao Bin Han Lei Zhu 《Journal of computational chemistry》2010,31(2):351-361
One of the major tasks in biological sequence analysis is to compare biological sequences, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations among the sequences. Numerous efficient methods have been developed for sequence comparison, but challenges remain. In this article, we proposed a novel method to compare biological sequences based on Gaussian model. Instead of comparing the frequencies of k‐words in biological sequences directly, we considered the k‐word frequency distribution under Gaussian model which gives the different expression levels of k‐words. The proposed method was tested by similarity search, evaluation on functionally related genes, and phylogenetic analysis. The performance of our method was further compared with alignment‐based and alignment‐free methods. The results demonstrate that Gaussian model provides more information about k‐word frequencies and improves the efficiency of sequence comparison. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
17.
Alexander B. Weberg Samuel P. McCollom Laura M. Thierer Michael R. Gau Patrick J. Carroll Neil C. Tomson 《Chemical science》2021,12(12):4395
A series of tetradentate tris(phosphinimine) ligands (R3P3tren) was developed and bound to CuI to form the trigonal pyramidal, C3v-symmetric cuprous complexes [R3P3tren-Cu][BArF4] (1PR3) (PR3 = PMe3, PMe2Ph, PMePh2, PPh3, PMe2(NEt2), BArF4 = B(C6F5)4). Electrochemical studies on the CuI complexes were undertaken, and the permethylated analog, 1PMe3, was found to display an unprecedentedly cathodic CuI/CuII redox potential (−780 mV vs. Fc/Fc+ in isobutyronitrile). Elucidation of the electronic structures of 1PR3via density functional theory (DFT) studies revealed atypical valence manifold configurations, resulting from strongly σ-donating phosphinimine moieties in the xy-plane that destabilize 2e (dxy/dx2−y2) orbital sets and uniquely stabilized a1 (dz2) orbitals. Support is provided that the a1 stabilizations result from intramolecular electrostatic fields (ESFs) generated from cationic character on the phosphinimine moieties in R3P3tren. This view is corroborated via 1-dimensional electrostatic potential maps along the z-axes of 1PR3 and their isostructural analogues. Experimental validation of this computational model is provided upon oxidation of 1PMe3 to the cupric complex [Me3P3tren-Cu][OTf]2 (2PMe3), which displays a characteristic Jahn–Teller distortion in the form of a see-saw, pseudo-Cs-symmetric geometry. A systematic anodic shift in the potential of the CuI/CuII redox couple as the steric bulk in the secondary coordination sphere increases is explained through the complexes'' diminishing ability to access the ideal Cs-symmetric geometry upon oxidation. The observations and calculations discussed in this work support the presence of internal electrostatic fields within the copper complexes, which subsequently influence the complexes'' properties via a method orthogonal to classic ligand field tuning.Secondary coordination sphere electrostatic effects tune the valence manifolds of copper centers, impacting molecular geometries, photophysical properties, and redox potentials. 相似文献
18.
Edward Karakhanov Yulia Kardasheva Artem Kirillov Anton Maximov Viktoriya Predeina Elena Runova 《Macromolecular Symposia》2000,156(1):137-146
A number of macromolecular and supramolecular catalysts which combine the functions of transition metal complex, phase transfer agent with molecular recognition ability has been designed. The complexes of rhodium, palladium, iron and copper showed the remarkable activity in hydroformylation, Wacker‐type oxidation of various olefins, oxidation of alkanes and hydroxylation of aromatics. 相似文献
19.
20.
Sun Y Yu X Takaoka Y Oh-i S Duzguneş N Hirota S 《Journal of colloid and interface science》2004,276(2):317-322
In this study, we used a rheological method to study the shape of DNA-cationic lipid complexes and model polyelectrolyte-lipid complexes. We introduced two kinds of anionic polyelectrolytes, sodium polygalacturonate (PGU) and sodium dextran sulfate (DSS), of varying size, as models for DNA. The prepared complexes were incubated under laminar flow conditions. The results show the same quantitative relation between the shape parameter of lipoplexes and the length of anionic polyelectrolytes, including DNA. The rheological behavior of PGU and DSS were similar to that of DNA. 相似文献