首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over a range of 102<Re*<5800, 6.5<Pr*<79, and 0.6<n<1, circumferential wall temperatures for water and aqueous polymer (purely viscous) solution flows over a smooth cylinder were measured experimentally. The cylinder was heated by passing direct electric current through it. Aqueous solutions of Carbopol 934 and EZ1 were used as power-law non-Newtonian fluids. The peripherally averaged heat transfer coefficient for purely viscous non-Newtonian fluids, at any fixed flow rate, decreases with increasing polymer concentration. A new correlation is proposed for predicting the peripherally averaged Nusselt number for power-law fluid flows over a heated cylinder in cross flow.  相似文献   

2.
The near tip field of mode II crack that grows in thin bodies with power hardening or perfectly plastic behavior is analyzed. It is shown that for power hardening behavior, the pseudo plane stress field possesses the logarithm singularity, i.e. σ (ln r)2/(n−1), (ln r)2n/(n − 1), where r is the distance from the crack tip, n the hardening exponent is σn. When n → ∞ the solution reduced to that for the perfectly plastic case.  相似文献   

3.
Rheological characterization of complex fluids in electro-magnetic fields   总被引:1,自引:0,他引:1  
The paper is focused on the experimental investigations and rheological characterisations in magnetic and electric fields of liquids based on water in crude oils emulsions, added with ferrofluids (two types of crude oils are used in experiments: asphaltic and paraffinic, respectively). The final samples disclose weakly effects in the presence of magnetic field (saturated magnetization: Mn < 300 [G]) and behave almost as isolators in electric field (conductivity: σ < 10−5 [S/m]). The main goal of the study is to explore to what extent rheometry of complex fluids in electric and magnetic fields is able to offer value information about the internal structure of the samples. The experimental results prove that anomalous rheological behaviour (thixotropy, non-monotonic flow curve or viscosity function) of a complex fluid (in our case, emulsions based on paraffinic oil) generate also thixotropic properties and non-monotonic answers in the presence ferrofluids, under low magnetic and/or electric fields intensity. Our prospective study suggests that novel experimental procedures based on interaction: electro-magnetic field–complex fluids can be developed, in order to determine indirectly some relevant rheological properties of the complex fluids with internal network structure.  相似文献   

4.
On the squeeze flow of a power-law fluid between rigid spheres   总被引:1,自引:0,他引:1  
The lubrication solution for the squeeze flow of a power-law fluid between two rigid spherical particles has been investigated. It is shown that the radial pressure distribution converges to zero within the gap between the particles for any value of the flow index, n, provided that the gap separation distance is sufficiently small. However, in the case of the viscous force, it is useful to consider that there are two contributions. The first is developed in the inner region of the gap and corresponds to the lubrication limit. The second is due to an integration of the pressure in the adjacent outer region of the gap. The relative contribution to the force in this outer region increases as n decreases and the separation distance increases. In particular, for flow indices in the range n>1/3, the contribution in the outer region is negligible if the separation distance is sufficiently small. For n1/3, this is the dominant term and an accurate prediction of the viscous force is possible only for discrete liquid bridges.Based on “zero” pressure and lubrication criteria for the upper limits of integration, two closed-form solutions have been derived for the viscous force. Both are accurate for n>0.5 and are in close agreement with a previously published asymptotic solution in the range n>0.6. For smaller values of n, the asymptotic solution over-estimates the viscous force and predicts a singularity when n approaches 1/3. The two closed-form solutions show continuous and monotonic behaviour for all values of n. Moreover, the solution satisfying the lubrication limit is valid in the range n<1/3 provided that it is restricted to liquid bridges.  相似文献   

5.
The asymptotic behavior of stress and strain near the tip of a Mode II crack growing in power law hardening material is analyzed by assuming that the crack grows straight ahead even though tests show otherwise. The results show that the stress and strain possess the singularities of (ln r)2/(n−1) and (ln r)2n/(n−1) respectively. The distance from the crack tip is r, and n is the hardening exponent, i.e. σn. The amplitudes of the stress and strain near the crack tip are determined by the asymptotic analysis.  相似文献   

6.
The steady planar sink flow through wedges of angle π/α with α≥1/2 of the upper convected Maxwell (UCM) and Oldroyd-B fluids is considered. The local asymptotic structure near the wedge apex is shown to comprise an outer core flow region together with thin elastic boundary layers at the wedge walls. A class of similarity solutions is described for the outer core flow in which the streamlines are straight lines giving stress and velocity singularities of O(r−2) and O(r−1), respectively, where r1 is the distance from the wedge apex. These solutions are matched to wall boundary layer equations which recover viscometric behaviour and are subsequently also solved using a similarity solution. The boundary layers are shown to be of thickness O(r2), their size being independent of the wedge angle. The parametric solution of this structure is determined numerically in terms of the volume flux Q and the pressure coefficient p0, both of which are assumed furnished by the flow away from the wedge apex in the r=O(1) region. The solutions as described are sufficiently general to accommodate a wide variety of external flows from the far-field r=O(1) region. Recirculating regions are implicitly assumed to be absent.  相似文献   

7.
A rigorous analysis of non-Newtonian boundary layer flow of power-law fluids over a stretching sheet is presented. First, a systematic framework for treatment of sheet velocities of the form U(x)=Cxm is provided. By means of an exact similarity transformation, the non-linear boundary layer momentum equation transforms into an ordinary differential equation with m and the power-law index n as the only parameters. Earlier investigations of a continuously moving surface (m=0) and a linearly stretched sheet (m=1) are recovered as special cases.For the particular parameter value m=1, i.e. linear stretching, numerical solutions covering the parameter range 0.1n2.0 are presented. Particular attention is paid to the most shear-thinning fluids, which exhibit a challenging two-layer structure. Contrary to earlier observations which showed a monotonic decrease of the sheet velocity gradient -f(0) with n, the present results exhibit a local minimum of -f(0) close to n=1.77. Finally, a series expansion in (n-1) is proved to give good estimates of -f(0) both for shear-thinning and shear-thickening fluids.  相似文献   

8.
This work is concerned with the surface treatment (ion nitriding) of fretting fatigue and fatigue resistance of 34CrNiMo6. Tests are made on a servo-hydraulic machine under tension for both treated and non-treated specimens. The test parameters involve the applied displacements δ±80–±170 μm; fretting pressure σn=1000–1400 MPa; fatigue stress amplitude σa=380–680 MPa and stress ratio R=−1. The ion nitriding process improves both fatigue and fretting fatigue lives. Subsurface crack initiation from internal discontinuities was found for ion-nitrided specimens.  相似文献   

9.
Summary The fluidity model ofHildebrand has been applied to dilute aqueous polymer solutions exhibiting non-Newtonian behaviour. As for Newtonian fluids, it is found that the temperature dependence of apparent viscosity of non-Newtonian fluids is determined entirely by the temperature dependence of fluid density. However, whereas the parameters ofHildebrand's equation are constants, independent of the conditions of shear for Newtonian fluids, these parameters become shear-rate dependent for non-Newtonian fluids. The magnitude of the parameters and their variation with shear rate can be explained qualitatively in terms of interactions of polymer molecules and their behaviour in a shear field.
Zusammenfassung Das Fließmodell vonHildebrand wird auf verdünnte wäßrige Polymerlösungen mit nicht-newtonschem Verhalten angewandt. Wie bei newtonschen Flüssigkeiten findet man hierfür, daß die Temperaturabhängigkeit der schergeschwindigkeitsabhängigen Viskosität ausschließlich durch die Temperaturabhängigkeit der Flüssigkeitsdichte bestimmt ist. Während jedoch die Parameter derHildebrandschen Gleichung für newtonsche Flüssigkeiten von den Scherbedingungen unabhängige Konstanten darstellen, werden diese bei nichtnewtonschen Flüssigkeiten schergeschwindigkeitsabhängig. Die Größe dieser Parameter und ihrer Variation mit der Schergeschwindigkeit kann qualitativ als eine Folge der Wechselwirkung der Polymermoleküle und ihres Verhaltens im Scherfeld gedeutet werden.

Notation B Parameter inHildebrand's fluidity equation, eq. [1] (N–1 m2 s–1) - K Consistency parameter in the power-law (Nm–2 s n ) - n Flow behaviour index in the power-law (–) - T Temperature (K) - V Molar volume (m3 mol–1) - V 0 Intrinsic molar volume; parameter inHildebrand's fluidity equation, eq. [1] (m3 mol–1) - Shear rate (s–1) - Viscosity or apparent viscosity (Nm–2 s) - Density (kg m–3) - 0 Intrinsic density; modified parameter inHildebrand's fluidity equation; eq. [5] (kg m–3) - Shear stress (Nm–2) With 4 figures and 1 table  相似文献   

10.
The two-dimensional forced convection stagnation-point flow and heat transfer of a viscoelastic second grade fluid obliquely impinging on an infinite plane wall is considered as an exact solution of the full partial differential equations. This oblique flow consists of an orthogonal stagnation-point flow to which a shear flow whose vorticity is fixed at infinity is added. The relative importance of these flows is measured by a parameter γ. The viscoelastic problem is reduced to two ordinary differential equations governed by the Weissenberg number We, two parameters α and β, the later being a free parameter β, introduced by Tooke and Blyth [A note on oblique stagnation-point flow, Physics of Fluids 20 (2008) 033101-1–3], and the Prandtl number Pr. The two cases when α=β and αβ are, respectively, considered. Physically the free parameter may be viewed as altering the structure of the shear flow component by varying the magnitude of the pressure gradient. It is found that the location of the separation point xs of the boundary layer moves continuously from the left to the right of the origin of the axes (xs<0).  相似文献   

11.
In this work, the linear stability analysis of the viscoelastic Taylor-Couette flow against non-axisymmetric disturbances is investigated. A pseudospectrally generated, generalized algebraic eigenvalue problem is constructed from the linearized set of the three-dimensional governing equations around the steady-state azimuthal solution. Numerical evaluation of the critical eigenvalues shows that for an upper-convected Maxwell model and for the specific set of geometric and kinematic parameters examined in this work, the azimuthal Couette (base) flow becomes unstable against non-axisymmetric time periodic disturbances before it does so for axisymmetric ones, provided the elasticity number ε (De/Re) is larger than some non-zero but small value (ε 0.01). In addition, as ε increases, different families of eigensolutions become responsible for the onset of instability. In particular, the azimuthal wavenumber of the critical eigensolution has been found to change from 1 to 2 to 3 and then back to 2 as ε increases from 0.01 to infinity (inertialess flow).In an analogous fashion to the axisymmetric viscoelastic Taylor-Couette flow, two possible patterns of time-dependent solutions (limit cycles) can emerge after the onset of instability: ribbons and spirals, corresponding to azimuthal and traveling waves, respectively. These patterns are dictated solely by the symmetry of the primary flow and have already been observed in conjunction with experiments involving Newtonian fluids but with the two cylinders counter-rotatng instead of co-rotating as considered here. Inclusion of a non-zero solvent viscosity (Oldroyd-B model) has been found to affect the results quantitatively but not qualitatively. These theoretical predictions are of particular importance for the interpretation of the experimental data obtained in a Taylor-Couette flow using highly elastic viscoelastic fluids.  相似文献   

12.
Zusammenfassung Die rheologischen Eigenschaften gesunder menschlicher Gelenksflüssigkeiten im Geschwindigkeitsgefällebereich vonD = 10–3-103 s–1 wurden untersucht. Es wurden die Scherviskosität und die erste Normalspannungsdifferenz gemessen. Gesunde Synovialflüssigkeiten besitzen hohe Anfangsviskosität (~40 Pa · s) und zeigen eine starke Abhängigkeit vom Geschwindigkeitsgefälle. Der SchermodulG ist im Gegensatz zu pathologischen Proben niedrig und über weite Bereiche konstant. Die längsten Relaxationszeiten betragen 5–10 s. Die kritische Konzentration, bei der Netzwerkbildung einsetzt, beträgt 0,75 10–3 g/ml. Die Proben lassen sich zu einer Masterkurve vereinigen, die als verallgemeinertes Fließgesetz für gesunde Synovia aufgefaßt werden kann. Eine Untersuchung über die zeitliche Abhängigkeit der post-mortem-Synovia zeigt, daß innerhalb von 12 Stunden keine nennenswerten Veränderungen eintreten.
The rheology of healthy human synovial fluids has been investigated at a shear-rate between 10–3-103 s–1. Shear viscosity and first normal-stress difference were measured. Healthy synovial fluids show high zero-shear viscosity (about 40 Pa · s) and a strong shear rate dependence. The modulusG is constant over a large range, in contrast to pathological samples. The longest relaxation times are 5–10 s. The critical concentrationc cr , at which entanglement occurs is about 0.75 10–3 g/ml. The samples can be represented by a master-curve, which may be regarded as the constitutive equation of healthy synovial fluids. An investigation of the time dependency of synovial fluids indicated no changes within 12 hours post mortem.
Herrn Prof. Dr. DDr. h. c. O. Kratky zum 80. Geburtstag mit den besten Wünschen gewidmet.  相似文献   

13.
The paper presents some modification of the previously published model of thixotropic fluids for the case of fluids with irreversible destruction of the structure. In the second part of the paper the laminar flow of this kind of fluids in pipes is discussed. A simple method of determining the initial value of the structural parameter at the inlet to the pipe is proposed. D pipe diameter, m - k 1,k 2 rheological parameter in eq. (5), Nsn/m2 - L pipe length, m - m 1,m 2 rheological parameter in eq. (5) - n 1,n 2 rheological parameter in eq. (6) - p pressure, Pa - v mean linear velocity in the pipe, m/s - rheological parameter in eq. (2), = 1 s - shear rate, s–1 - structural parameter - 0 initial value of structural parameter - 1, 2 mean value of natural time for breakdown and build-up of the structure, respectively, s - shear stress, Pa - fluid density, kg/m3 - mean value of the friction factor - De modified Deborah number defined by eq. (11) - Re m generalized Reynolds number defined by eq. (16) - Re n generalized Reynolds number defined by eq. (10) - Se structural numbers defined eq. (12)  相似文献   

14.
Exact series solutions for planar creeping flows of Oldroyd-B fluids in the neighbourhood of sharp corners are presented and discussed. Both reentrant and non-reentrant sectors are considered. For reentrant sectors it is shown that more than one type of series solution can exist formally, one type exhibiting Newtonian-like asymptotic behaviour at the corner, away from walls, and another type exhibiting the same kind of asymptotics as an Upper Convected Maxwell (UCM) fluid. The solutions which are Newtonian-like away from walls are shown to develop non-integrable stress singularities at the walls when the no-slip velocity boundary condition is imposed. These mathematical solutions are therefore inadmissible from the physical viewpoint under no-slip conditions. An inadmissible solution, with stress singularities which are not everywhere integrable, is identified among the solutions of UCM-type. For a 270° reentrant sector the radial behaviour of the normal stress is everywhere r−0.613. In the viscometric region near a wall, the radial normal stress σrr behaves like (rε)−0.613, where ε is the angle made with the wall. In addition σrθ is infinite (not integrable) at the wall even when r is non-zero. Another UCM-type solution has a normal stress behaviour away from walls which is r−0.985 for 270° sector. Again, this solution has a non-integrable stress singularity and is therefore inadmissible. Finally, for non-reentrant sectors it is shown that the flow is always Newtonian-like away from walls.  相似文献   

15.
This work studies the asymptotic stress and displacement fields near the tip of a stationary crack in an elastic–plastic nonhomogeneous material with the emphasis on the effect of material nonhomogeneities on the dominance of the crack tip field. While the HRR singular field still prevails near the crack tip if the material properties are continuous and piecewise continuously differentiable, a simple asymptotic analysis shows that the size of the HRR dominance zone decreases with increasing magnitude of material property gradients. The HRR field dominates at points that satisfy |α−1 ∂α/∂xδ|1/r, |α−12α/(∂xδxγ)|1/r2, |n−1n/∂xδ|1/[r|ln(r/A)|] and |n−12n/(∂xδxγ)|1/[r2|ln(r/A)|], in addition to other general requirements for asymptotic solutions, where α is a material property in the Ramberg–Osgood model, n is the strain hardening exponent, r is the distance from the crack tip, xδ are Cartesian coordinates, and A is a length parameter. For linear hardening materials, the crack tip field dominates at points that satisfy |Etan−1Etan/∂xδ|1/r, |Etan−12Etan/(∂xδxγ)|1/r2, |E−1E/∂xδ|1/r, and |E−12E/(∂xδxγ)|1/r2, where Etan is the tangent modulus and E is Young’s modulus.  相似文献   

16.
Equivalent lagrangians and the solution of some classes of non-linear equations
The second-order ordinary differential equation
, where μ ≠ 1 is linearizable(sl(3, R) algebra) via a point transformation if and only if n = μ or n = 1. We construct a quadratic Lagrangian , which determines the point transformation Q = F(t,q) and = G(t,q) that maps the Lagrangian to the simple completely integrable Lagrangian . For n = 4μ − 3 the equation admits the sl(2, R) algebra. In this case we again construct a quadratic Lagrangian and then obtain the corresponding point transformation that reduces the original Lagrangian to the representative Lagrangian . For both cases, sl(2,R) and sl(3,R), we obtain complete solutions (cf. [1,2]).  相似文献   

17.
The motivation to examine physical events at even smaller size scale arises from the development of use-specific materials where information transfer from one micro- or macro-element to another could be pre-assigned. There is the growing belief that the cumulated macroscopic experiences could be related to those at the lower size scales. Otherwise, there serves little purpose to examine material behavior at the different scale levels. Size scale, however, is intimately associated with time, not to mention temperature. As the size and time scales are shifted, different physical events may be identified. Dislocations with the movements of atoms, shear and rotation of clusters of molecules with inhomogeneity of polycrystals; and yielding/fracture with bulk properties of continuum specimens. Piecemeal results at the different scale levels are vulnerable to the possibility that they may be incompatible. The attention should therefore be focused on a single formulation that has the characteristics of multiscaling in size and time. The fact that the task may be overwhelmingly difficult cannot be used as an excuse for ignoring the fundamental aspects of the problem.Local nonlinearity is smeared into a small zone ahead of the crack. A “restrain stress” is introduced to also account for cracking at the meso-scale.The major emphasis is placed on developing a model that could exhibit the evolution characteristics of change in cracking behavior due to size and speed. Material inhomogeneity is assumed to favor self-similar crack growth although this may not always be the case. For relatively high restrain stress, the possible nucleation of micro-, meso- and macro-crack can be distinguished near the crack tip region. This distinction quickly disappears after a small distance after which scaling is no longer possible. This character prevails for Mode I and II cracking at different speeds. Special efforts are made to confine discussions within the framework of assumed conditions. To be kept in mind are the words of Isaac Newton in the Fourth Regula Philosophandi:
Men are often led into error by the love of simplicity which disposes us to reduce things to few principles, and to conceive a greater simplicity in nature than there really isWe may learn something of the way in which nature operates from fact and observation; but if we conclude that it operates in such a manner, only because to our understanding that operates to be the best and simplest manner, we shall always go wrong.”––Isaac Newton

Article Outline

1. Introduction
2. Elastodynamic equations and moving coordinates
3. Moving crack with restrain stress zone
3.1. Mode I crack
3.2. Mode II crack
4. Strain energy density function
4.1. Mode I
4.2. Mode II
5. Conclusions
Acknowledgements
References

1. Introduction

Even though experimental observations could reveal atomic scale events, in principle, analytical predictions of atomic movements fall short of expectation by a wide margin. Classical dislocation models have shown to be inadequate by large scale computational schemes such as embedded atoms and molecular dynamics. Lacking in particular is a connection between interatomic (10−8 cm) processes and behavior on mesoscopic scale (10−4 cm) [1]. Relating microstructure entities to macroscopic properties may represent too wide of a gap. A finer scale range may be needed to understand the underlying physics. Segmentation in terms of lineal dimensions of 10−6–10−5, 10−5–10−3 and 10−3–10−2 cm may be required. They are referred to, respectively, as the micro-, meso- and macro-scale. Even though the atomistic simulation approach has gained wide acceptance in recent times, continuum mechanics remains as a power tool for modeling material behavior. Validity of the discrete and continuum approach at the different length scales has been discussed in [2 and 3].Material microstructure inhomogeneities such as lattice configurations, phase topologies, grain sizes, etc. suggest an uneven distribution of stored energy per unit volume. The size of the unit volume could be selected arbitrarily such as micro-, meso- or macroscopic. When the localized energy concentration level overcomes the microstructure integrity, a change of microstructure morphology could take place. This can be accompanied by a corresponding redistribution of the energy in the system. A unique correspondence between the material microstructure and energy density function is thus assumed [4]. Effects of material structure can be reflected by continuum mechanics in the constitutive relations as in [5 and 6] for piezoelectric materials.In what follows, the energy density packed in a narrow region of prospective crack nucleation sites, the width of this region will be used as a characteristic length parameter for analyzing the behavior of moving cracks in materials at the atomic, micro-, meso- and macroscopic scale level. Nonlinearity is confined to a zone local to the crack tip. The degree of nonlinearity can be adjusted by using two parameters (σ0,ℓ) or (τ0,ℓ) where σ0 and τ0 are referred to, respectively, as the stresses of “restraint” owing to the normal and shear action over a local zone of length ℓ. The physical interpretation of σ0 and τ0 should be distinguished from the “cohesive stress” and “yield stress” initiated by Barenblatt and Dugdale although the mathematics may be similar. The former has been regarded as intrinsic to the material microstructure (or interatomic force) while the latter is triggered by macroscopic external loading. Strictly speaking, they are both affected by the material microstructure and loading. The difference is that their pre-dominance occurs at different scale levels. Henceforth, the term restrain stress will be adopted. For simplicity, the stresses σ0 and τ0 will be taken as constants over the segment ℓ and they apply to the meso-scale range as well.

2. Elastodynamic equations and moving coordinates

Navier’s equation of motion is given by(1)in which u and f are displacement and body force vector, respectively. Let the body force equal to zero, and introduce dilatational displacement potential φ(x,y,t) and the distortional displacement potential ψ(x,y,t) such that(2)u=φ+×ψThis yields two wave equations as(3)where 2 is the Laplacian in x and y while dot represents time differentiation. The dilatational and shear wave speeds are denoted by cd and cs, respectively.For a system of coordinates moving with velocity v in the x-direction,(4)ξ=xvt, η=ythe potential function φ(x,y,t) and ψ(x,y,t) can be simplified to(5)φ=φ(ξ,η), ψ=ψ(ξ,η)Eq. (3) can thus be rewritten as(6)in which(7)In view of Eqs. (7), φ and ψ would depend on (ξ,η) as(8)φ(ξ,η)=Re[Fd)], ψ(ξ,η)=Im[Gs)]The arguments ζj(j=d,s) are complex:(9)ζj=ξ+iαjη for j=d,sThe stress and displacement components in terms of φ and ψ are given as(10)uy(ξ,η)=−Im[αdFd)+Gs)]The stresses are(11)σxy(ξ,η)=−μ Im[2αdFd)+(1+αs2)Gs)]σxx(ξ,η)=μ Re[(1−αs2+2αd2)Fd)+2αsGs)]σyy(ξ,η)=−μ Re[(1+αs2)Fd)+2αsGs)]with μ being the shear modulus of elasticity.

3. Moving crack with restrain stress zone

The local stress zone is introduced to represent nonlinearity; it can be normal or shear depending on whether the crack is under Mode I or Mode II loading. For Mode I, a uniform stress σ is applied at infinity while τ is for Mode II. The corresponding stress in the local zone of length ℓ are σ0 are τ0. They are shown in Fig. 1 for Mode I and Fig. 2 for Mode II. Assumed are the conditions in the Yoffé crack model. What occurs as positive at the leading crack edge, the negative is assumed to prevail at the trailing edge.  相似文献   

18.
We consider ω-minima of convex variational integrals in the vectorial case n,N≥2, and we provide estimates for the Hausdorff dimension of their singular sets.  相似文献   

19.
The two-dimensional and unsteady free stream flow of power law fluids past a long square cylinder has been investigated numerically in the range of conditions 60≤Re≤160 and 0.5≤n≤2.0. Over this range of Reynolds numbers, the flow is periodic in time. A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. The global quantities such as drag coefficients, Strouhal number and the detailed kinematic variables like stream function, vorticity and so on, have been obtained for the above range of conditions. While, over this range of Reynolds number, the flow is known to be periodic in time for Newtonian fluids, a pseudo-periodic flow regime displaying more than one dominant frequency in the lift is observed for shear-thinning fluids. This seems to occur at Reynolds numbers of 120 and 140 for n=0.5 and 0.6, respectively. Broadly speaking, the smaller the value of the power law index, lower is the Reynolds number of the onset of the pseudo-periodic regime. This work is concerned only with the fully periodic regime and, therefore, the range of Reynolds numbers studied varies with the value of the power law index. Not withstanding this aspect, in particular here, the effects of Reynolds number and of the power law index have been elucidated in the unsteady laminar flow regime. The leading edge separation in shear-thinning fluids produces an increase in drag values with the increasing Reynolds number, while shear-thickening fluid behaviour delays this separation and shows the lowering of the drag coefficient with the Reynolds number. Also, the preliminary results suggest the transition from the steady to unsteady flow conditions to occur at lower Reynolds numbers in shear-thinning fluids than that in Newtonian fluids.  相似文献   

20.
An interlaminar-shear-stress analysis developed earlier by Tsai et al. (1990, Micro-cracking-Induced Damage in Composites) for a [φm/θn], bi-directional composite laminate is used to solve the case of a cross-ply [0m/90n]x laminate with the 90° layer only or both layers cracked under pure shear loading. Strains, forces and laminate shear modulus reduction due to matrix cracking were obtained. Experimental results for shear modulus as a function of crack densities were obtained by a simple shear test and they agree very well with the theoretical prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号