首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
We consider a mathematical program whose constraints involve a parametric P-matrix linear complementarity problem with the design (upper level) variables as parameters. Solutions of this complementarity problem define a piecewise linear function of the parameters. We study a smoothing function of this function for solving the mathematical program. We investigate the limiting behaviour of optimal solutions, KKT points and B-stationary points of the smoothing problem. We show that a class of mathematical programs with P-matrix linear complementarity constraints can be reformulated as a piecewise convex program and solved through a sequence of continuously differentiable convex programs. Preliminary numerical results indicate that the method and convex reformulation are promising.  相似文献   

2.
This paper presents a sequential quadratic programming algorithm for computing a stationary point of a mathematical program with linear complementarity constraints. The algorithm is based on a reformulation of the complementarity condition as a system of semismooth equations by means of Fischer-Burmeister functional, combined with a classical penalty function method for solving constrained optimization problems. Global convergence of the algorithm is established under appropriate assumptions. Some preliminary computational results are reported.  相似文献   

3.
结合罚函数思想和广义梯度投影技术,提出求解非线性互补约束数学规划问题的一个广义梯度投影罚算法.首先,通过扰动技术和广义互补函数,将原问题转化为序列带参数的近似的标准非线性规划;其次,利用广义梯度投影矩阵构造搜索方向的显式表达式.一个特殊的罚函数作为效益函数,而且搜索方向能保证效益函数的下降性.在适当的假设条件下算法具有全局收敛性.  相似文献   

4.
The relationship between the mathematical program with linear complementarity constraints (MPLCC) and its inequality relaxation is studied. Based on this relationship, a new sequential quadratic programming (SQP) method is presented for solving the MPLCC. A certain SQP technique is introduced to deal with the possible infeasibility of quadratic programming subproblems. Global convergence results are derived without assuming the linear independence constraint qualification for MPEC, the nondegeneracy condition, and any feasibility condition of the quadratic programming subproblems. Preliminary numerical results are reported. Research is partially supported by Singapore-MIT Alliance and School of Business, National University of Singapore.  相似文献   

5.
We propose a method for finding a global optimal solution of programs with linear complementarity constraints. This problem arises for instance in bilevel programming. The main idea of the method is to generate a sequence of points either ending at a global optimal solution within a finite number of iterations or converging to a global optimal solution. The construction of such sequence is based on branch-and-bound techniques, which have been used successfully in global optimization. Results on a numerical test of the algorithm are reported.The main part of this article was written during the first authors stay as Visiting Professor at the Institute of Policy and Planning Sciences, University of Tsukuba, Tsukuba, Japan. The second and the third authors were supported by Grant-in-Aid for Scientific Research C(2) 13650061 of the Ministry of Education, Culture, Sports, Science, and\break Technology of Japan.The authors thank P. B. Hermanns, Department of Mathematics, University of Trier, for carrying out the numerical test reported in Section 5. The authors also thank the referees and the Associate Editor for comments and suggestions which helped improving the first version of this article.  相似文献   

6.
The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these feasible solutions and the best resulting solution provides an estimate for the optimal solution to the quadratic program with complementarity constraints. Computational testing of such an approach is described for a problem arising in portfolio optimization.Research supported in part by the National Science Foundations VIGRE Program (Grant DMS-9983646).Research partially supported by NSF Grant number CCR-9901822.  相似文献   

7.
Quasi-Newton methods in conjunction with the piecewise sequential quadratic programming are investigated for solving mathematical programming with equilibrium constraints, in particular for problems with complementarity constraints. Local convergence as well as superlinear convergence of these quasi-Newton methods can be established under suitable assumptions. In particular, several well-known quasi-Newton methods such as BFGS and DFP are proved to exhibit the local and superlinear convergence.  相似文献   

8.
In this paper, an algorithm for solving a mathematical programming problem with complementarity (or equilibrium) constraints (MPEC) is introduced, which uses the active-set methodology while maintaining the complementarity restrictions throughout the procedure. Finite convergence of the algorithm to a strongly stationary point of the MPEC is established under reasonable hypotheses. The algorithm can be easily implemented by adopting any active-set code for nonlinear programming. Computational experience is included to highlight the efficacy of the proposed method in practice.  相似文献   

9.
利用互补问题的Lagrange函数,
将互补约束优化问题(MPCC)转化为含参数的约束优化问题.
给出Lagrange乘子的简单修正公式,
并给出求解互补约束优化问题的部分罚函数法. 无须假设二阶必要条件成立,
只要算法产生的迭代点列的极限点满足互补约束优化问题的线性独立约束规范(MPCC-LICQ),
且极限点是MPCC的可行点, 则算法收敛到原问题的M-稳定点. 另外,
在上水平严格互补(ULSC)成立的条件下, 算法收敛到原问题的B-稳定点.  相似文献   

10.
In this paper, we apply a partial augmented Lagrangian method to mathematical programs with complementarity constraints (MPCC). Specifically, only the complementarity constraints are incorporated into the objective function of the augmented Lagrangian problem while the other constraints of the original MPCC are retained as constraints in the augmented Lagrangian problem. We show that the limit point of a sequence of points that satisfy second-order necessary conditions of the partial augmented Lagrangian problems is a strongly stationary point (hence a B-stationary point) of the original MPCC if the limit point is feasible to MPCC, the linear independence constraint qualification for MPCC and the upper level strict complementarity condition hold at the limit point. Furthermore, this limit point also satisfies a second-order necessary optimality condition of MPCC. Numerical experiments are done to test the computational performances of several methods for MPCC proposed in the literature. This research was partially supported by the Research Grants Council (BQ654) of Hong Kong and the Postdoctoral Fellowship of The Hong Kong Polytechnic University. Dedicated to Alex Rubinov on the occassion of his 65th birthday.  相似文献   

11.
In this paper, we consider a mathematical program with complementarity constraints. We present a modified relaxed program for this problem, which involves less constraints than the relaxation scheme studied by Scholtes (2000). We show that the linear independence constraint qualification holds for the new relaxed problem under some mild conditions. We also consider a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is C-stationary to the original problem under the MPEC linear independence constraint qualification and, if the Hessian matrices of the Lagrangian functions of the relaxed problems are uniformly bounded below on the corresponding tangent space, it is M-stationary. We also obtain some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices mentioned above are new and can be verified easily. This work was supported in part by the Scientific Research Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan. The authors are grateful to an anonymous referee for critical comments.  相似文献   

12.
In this paper, we present a new relaxation method for mathematical programs with complementarity constraints. Based on the fact that a variational inequality problem defined on a simplex can be represented by a finite number of inequalities, we use an expansive simplex instead of the nonnegative orthant involved in the complementarity constraints. We then remove some inequalities and obtain a standard nonlinear program. We show that the linear independence constraint qualification or the Mangasarian–Fromovitz constraint qualification holds for the relaxed problem under some mild conditions. We consider also a limiting behavior of the relaxed problem. We prove that any accumulation point of stationary points of the relaxed problems is a weakly stationary point of the original problem and that, if the function involved in the complementarity constraints does not vanish at this point, it is C-stationary. We obtain also some sufficient conditions of B-stationarity for a feasible point of the original problem. In particular, some conditions described by the eigenvalues of the Hessian matrices of the Lagrangian functions of the relaxed problems are new and can be verified easily. Our limited numerical experience indicates that the proposed approach is promising.  相似文献   

13.
With the aid of some novel complementarity constraint qualifications, we derive some simplified primal-dual characterizations of a B-stationary point for a mathematical program with complementarity constraints (MPEC). The approach is based on a locally equivalent piecewise formulation of such a program near a feasible point. The simplified results, which rely heavily on a careful dissection and improved understanding of the tangent cone of the feasible region of the program, bypass the combinatorial characterization that is intrinsic to B-stationarity.  相似文献   

14.
This paper discusses a special class of mathematical programs with nonlinear complementarity constraints, its goal is to present a globally and superlinearly convergent algorithm for the discussed problems. We first reformulate the complementarity constraints as a standard nonlinear equality and inequality constraints by making use of a class of generalized smoothing complementarity functions, then present a new SQP algorithm for the discussed problems. At each iteration, with the help of a pivoting operation, a master search direction is yielded by solving a quadratic program, and a correction search direction for avoiding the Maratos effect is generated by an explicit formula. Under suitable assumptions, without the strict complementarity on the upper-level inequality constraints, the proposed algorithm converges globally to a B-stationary point of the problems, and its convergence rate is superlinear.AMS Subject Classification: 90C, 49MThis work was supported by the National Natural Science Foundation (10261001) and the Guangxi Province Science Foundation (0236001, 0249003) of China.  相似文献   

15.
We adapt the convergence analysis of the smoothing (Ref. 1) and regularization (Ref. 2) methods to a penalty framework for mathematical programs with complementarity constraints (MPCC); we show that the penalty framework shares convergence properties similar to those of these methods. Moreover, we give sufficient conditions for a sequence generated by the penalty framework to be attracted to a B-stationary point of the MPCC.  相似文献   

16.
<正>Mathematical programs with complementarity constraints(MPCC) is an important subclass of MPEC.It is a natural way to solve MPCC by constructing a suitable approximation of the primal problem.In this paper,we propose a new smoothing method for MPCC by using the aggregation technique.A new SQP algorithm for solving the MPCC problem is presented.At each iteration,the master direction is computed by solving a quadratic program,and the revised direction for avoiding the Maratos effect is generated by an explicit formula.As the non-degeneracy condition holds and the smoothing parameter tends to zero,the proposed SQP algorithm converges globally to an S-stationary point of the MPEC problem,its convergence rate is superlinear.Some preliminary numerical results are reported.  相似文献   

17.
本文提出了一类隐互补约束优化问题的磨光SQP算法.首先,我们给出了这类优化问题的最优性和约束规范性条件.然后,在适当假设条件下,我们证明了算法具有全局收敛性.  相似文献   

18.
To solve nonlinear complementarity problems (NCP), the logarithmic-quadratic proximal (LQP) method solves a system of nonlinear equations at each iteration. In this paper, the iterates generated by the original LQP method are extended by explicit formulas and thus an extended LQP method is presented. It is proved theoretically that the lower bound of the progress obtained by the extended LQP method is greater than that by the original LQP method. Preliminary numerical results are provided to verify the theoretical assertions and the effectiveness of both the original and the extended LQP method.  相似文献   

19.
提供了一种新的非单调内点回代线搜索技术的仿射内点信赖域方法解线性不等式约束的广义非线性互补问题(GCP).基于广义互补问题构成的半光滑方程组的广义Jacobian矩阵,算法使用l2范数作为半光滑方程组的势函数,形成的信赖域子问题为一个带椭球约束的线性化的二次模型.利用广义牛顿方程计算试探迭代步,通过内点映射回代技术确保迭代点是严格内点,保证了算法的整体收敛性.在合理的条件下,证明了信赖域算法在接近最优点时可转化为广义拟牛顿步,进而具有局部超线性收敛速率.非单调技术将克服高度非线性情况加速收敛进展.最后,数值结果表明了算法的有效性.  相似文献   

20.
In this article a detailed analytical formulation of the unilateral contact boundary conditions with Coulomb's law of dry friction is first attempted and the quasi-static contact problem between 3-D elastic bodies is studied thereafter. Discretizing the bodies by the Finite Element Method, introducing fictitious contact bonds and using the concept of the equivalent structural system, an incremental Nonlinear Complementarity Problem is finally formulated. Then, using additional simplifying assumptions, this problem can be transformed into an incremental Linear Complementarity Problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号