首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this paper is to present a numerical method for the Smoluchowski equation,a drift-diffusion equation on the sphere,arising in the modelling of particle dynamics.The numerical method uses radial basis functions(RBF).This is a relatively new approach,which has recently mainly been used for geophysical applications.For a simplified model problem we compare the RBF approach with a spectral method,i.e.the standard approach used in related physical applications.This comparison as well as our other accuracy studies show that RBF methods are an attractive alternative for these kind of models.  相似文献   

2.
Left-invariant PDE-evolutions on the roto-translation group $SE(2)$ (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, are missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based methods (equivalent to $SE(2)$-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of all numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions, crucial in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining left-invariant PDE-evolutions with invertible orientation scores.  相似文献   

3.
We study the problem of finding numerical solutions of the linear algebraic equation, a*x=b, where a denotes an N × N ill-conditioned coefficient matrix. It is well-known that Gaussian elimination methods coupled with pivoting strategies are ineffective in this setting due to round-off error. We propose a new and simple application of the fast Fourier transform (FFT) method. Other viable methods, such as the QR method (QRM) or the singular value decomposition method (SVDM), have been proposed in the literature. The goal of this paper is to investigate the performance of the proposed method and compare it to other popular methods. The comparison is illustrated by computer simulation results using MATLAB.  相似文献   

4.
In this work, we present a numerical method based on a splitting algorithm to find the solution of an inverse source problem with the integral condition. The source term is reconstructed by using the specified data and by employing the Lie splitting method, we decompose the equation into linear and nonlinear parts. Each subproblem is solved by the Fourier transform and then by combining the solutions of subproblems, the solution of the original problem is computed. Moreover, the framework of strongly continuous semigroup (or C0-semigroup) is employed in error analysis of operator splitting method for the inverse problem. The convergence of the proposed method is also investigated and proved. Finally, some numerical examples in one, two, and three-dimensional spaces are provided to confirm the efficiency and capability of our work compared with some other well-known methods.  相似文献   

5.
This work suggested a new generalized fractional derivative which is producing different kinds of singular and nonsingular fractional derivatives based on different types of kernels. Two new fractional derivatives, namely Yang-Gao-Tenreiro Machado-Baleanu and Yang-Abdel-Aty-Cattani based on the nonsingular kernels of normalized sinc function and Rabotnov fractional-exponential function are discussed. Further, we presented some interesting and new properties of both proposed fractional derivatives with some integral transform. The coupling of homotopy perturbation and Laplace transform method is implemented to find the analytical solution of the new Yang-Abdel-Aty-Cattani fractional diffusion equation which converges to the exact solution in term of Prabhaker function. The obtained results in this work are more accurate and proposed that the new Yang-Abdel-Aty-Cattani fractional derivative is an efficient tool for finding the solutions of other nonlinear problems arising in science and engineering.  相似文献   

6.
In this study, the numerical solutions of the Fornberg-Whitham (FW) equation modeling the qualitative behavior of wave refraction and the modified Fornberg-Whitham (mFW) equation describing the solitary wave and peakon waves with a discontinuous first derivative at the peak have been obtained. To obtain numerical results, the collocation finite element method has been combined with quintic B-spline bases. Although there are solutions to these equations by semi-analytical and analytical methods in the literature, there are very few studies using numerical methods. The stability analysis of the applied method is examined by the von-Neumann Fourier series method. We have considered four test problems with nonhomogeneous boundary conditions that have analytical solutions to show the performance of the method. The numerical results of the two problems are compared with some studies in the literature. Additionally, peakon wave solutions and some new numerical results of the mFW equation, which are not available in the literature, are given in the last two problems. No comparison has been made since there are no numerical results in the literature for the last two problems. The error norms $L_{2}$ and $L_{\infty }$ are calculated to demonstrate the presented numerical scheme''s accuracy and efficiency. The advantage of the scheme is that it produces accurate and reliable solutions even for modest values of space and time step lengths, rather than small values that cause excessive data storage in the computation process. In general, large step lengths in the space and time directions result in smaller matrices. This means less storage on the computer and results in faster outcomes. In addition, the present method gives more accurate results than some methods given in the literature.  相似文献   

7.
In the present paper, the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data in an infinite “strip” domain is considered. This problem is severely ill-posed, i.e., the solution does not depend continuously on the data. A conditional stability result is given. A new a posteriori Fourier method for solving this problem is proposed. The corresponding error estimate between the exact solution and its regularization approximate solution is also proved. Numerical examples show the effectiveness of the method and the comparison of numerical effect between the a posteriori and the a priori Fourier method are also taken into account.  相似文献   

8.
This study deals with obtaining numerical solutions of two-dimensional (2D) fractional cable equation in neuronal dynamics by using a recently introduced meshless method. In solution process at first stage, time derivatives that are appeared in the considered problem are discretized by using finite difference method. Then a meshless method based on hybridization of Gaussian and cubic kernels is developed in local fashion. The problem is solved both on regular and irregular domians. L and RMS error norms are calculated and compared with other numerical methods in literature as well as exact solutions. Also, obtained condition numbers are monitored. Numerical simulations show that local hybrid kernel meshless method is a thriving method for solving 2D fractional cable equation on regular and irregular domians.  相似文献   

9.
Global optimization techniques exist in the literature for finding the optimal shape parameter of the infinitely smooth radial basis functions (RBF) if they are used to solve partial differential equations. However these global collocation methods, applied directly, suffer from severe ill-conditioning when the number of centers is large. To circumvent this, we have used a local optimization algorithm, in the optimization of the RBF shape parameter which is then used to develop a grid-free local (LRBF) scheme for solving convection–diffusion equations. The developed algorithm is based on the re-construction of the forcing term of the governing partial differential equation over the centers in a local support domain. The variable (optimal) shape parameter in this process is obtained by minimizing the local Cost function at each center (node) of the computational domain. It has been observed that for convection dominated problems, the local optimization scheme over uniform centers has produced oscillatory solutions, therefore, in this work the local optimization algorithm has been experimented over Chebyshev and non-uniform distribution of the centers. The numerical experiments presented in this work have shown that the LRBF scheme with the local optimization produced accurate and stable solutions over the non-uniform points even for convection dominant convection–diffusion equations.  相似文献   

10.
We consider elastodynamics in transversely isotropic media with vertical symmetry axis. The governing equations are the two-dimensional second-order system for displacements. A numerical method for generating transparent boundary conditions on the cylindrical surface is proposed. The correspondent operator is non-local in both z-direction and time: it handles low-frequency spatial harmonics of the solution convolving their Fourier coefficients with sums-of-exponentials kernels with respect to time. Test calculations show high accuracy, efficiency, and stability of the proposed non-reflecting conditions even for those media parameters where PML fails.  相似文献   

11.
We present a meshless technique which can be seen as an alternative to the method of fundamental solutions (MFS). It calculates homogeneous solutions of the Laplacian (i.e. harmonic functions) for given boundary data by a direct collocation technique on the boundary using kernels which are harmonic in two variables. In contrast to the MFS, there is no artificial boundary needed, and there is a fairly general and complete error analysis using standard techniques from meshless methods for the recovery of functions. We present two explicit examples of harmonic kernels, a mathematical analysis providing error bounds and convergence rates, and some illustrating numerical examples.  相似文献   

12.
A version of boundary integral equations of the first kind in dynamic problems of the theory of elasticity is proposed, based on an investigation of the analytic properties of the Fourier transformant of the displacement vector, rather than on fundamental solutions. A system of three boundary integral equations of the first kind with Fredholm kernels is constructed, and the equivalence of the initial boundary-value problem on the vibrations of a bounded region and the system of boundary integral equations obtained is investigated. A version of the numerical realization, which combines the ideas of the classical method of boundary elements and the Tikhonov regularization method, is proposed. The results of numerical experiments are given.  相似文献   

13.
The local radial basis function (RBF) method is a promising solver for variable‐order time fractional diffusion equation (TFDE), as it overcomes the computational burden of the traditional global method. Application of the local RBF method is limited to Fickian diffusion, while real‐world diffusion is usually non‐Fickian in multiple dimensions. This article is the first to extend the application of the local RBF method to two‐dimensional, variable‐order, time fractional diffusion equation in complex shaped domains. One of the main advantages of the local RBF method is that only the nodes located in the subdomain, surrounding the local point, need to be considered when calculating the numerical solution at this point. This approach can perform well with large scale problems and can also mitigate otherwise ill‐conditioned problems. The proposed numerical approach is checked against two examples with curved boundaries and known analytical solutions. Shape parameter and subdomain node number are investigated for their influence on the accuracy of the local RBF solution. Furthermore, quantitative analysis, based on root‐mean‐square error, maximum absolute error, and maximum error of the partial derivative indicates that the local RBF method is accurate and effective in approximating the variable‐order TFDE in two‐dimensional irregular domains.  相似文献   

14.
15.
A new meshless method called gradient reproducing kernel particle method (GRKPM) is proposed for numerical solutions of one-dimensional Burgers’ equation with various values of viscosity and different initial and boundary conditions. Discretization is first done in the space via GRKPM, and subsequently, the reduced system of nonlinear ordinary differential equations is discretized in time by the Gear's method. Comparison with the exact solutions, which are only available for restricted initial conditions and values of viscosity, approves the efficacy of the proposed method. For challenging cases involving small viscosities, comparison with the results obtained using other numerical schemes in the literature further attests the desirable features of the presented methodology.  相似文献   

16.
The aim of the present work is to find the numerical solutions for time‐fractional coupled Burgers equations using a new novel technique, called fractional natural decomposition method (FNDM). Two examples are considered in order to illustrate and validate the efficiency of the proposed algorithm. The numerical simulation has been conducted to ensure the exactness of the present method, and the obtained solutions are offered graphically to reveal the applicability and reliability of the FNDM. The outcomes of the study reveal that the FNDM is computationally very effective and accurate to study the (2 + 1)‐dimensional coupled Burger equations of arbitrary order.  相似文献   

17.
Analytical and numerical investigation of electron acoustic waves shows the existence of interacting dromions solutions. Using the asymptotic perturbation (AP) method, based on Fourier expansion and spatio-temporal rescaling, it is found that the amplitude slow modulation of Fourier modes is described by a system of nonlinear evolution equations. This system is C-integrable, i.e. can be linearized through an appropriate transformation of the dependent and independent variables. We demonstrate the existence of dromion solutions, which propagate with their own group velocity and during a collision maintain their shape, the only change being a phase shift. Numerical results are used to check the validity of the AP method.  相似文献   

18.
The object of this paper is to present the numerical solution of the time‐space fractional telegraph equation. The proposed method is based on the finite difference scheme in temporal direction and Fourier spectral method in spatial direction. The fast Fourier transform (FFT) technique is applied to practical computation. The stability and convergence analysis are strictly proven, which shows that this method is stable and convergent with (2?α) order accuracy in time and spectral accuracy in space. Moreover, the Levenberg‐Marquardt (L‐M) iterative method is employed for the parameter estimation. Finally, some numerical examples are given to confirm the theoretical analysis.  相似文献   

19.
For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes ?>1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod’s method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.  相似文献   

20.
The main aim of the present work is to propose a new and simple algorithm for space-fractional telegraph equation, namely new fractional homotopy analysis transform method (HATM). The fractional homotopy analysis transform method is an innovative adjustment in Laplace transform algorithm (LTA) and makes the calculation much simpler. The proposed technique solves the nonlinear problems without using Adomian polynomials and He’s polynomials which can be considered as a clear advantage of this new algorithm over decomposition and the homotopy perturbation transform method (HPTM). The beauty of the paper is error analysis which shows that our solution obtained by proposed method converges very rapidly to the known exact solution. The numerical solutions obtained by proposed method indicate that the approach is easy to implement and computationally very attractive. Finally, several numerical examples are given to illustrate the accuracy and stability of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号