首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under steady fluid loading, elastic structures are liable to exhibit dynamic bifurcations to limit cycles: such unimodal instabilities are referred to as galloping while such multimodal instabilities are referred to as flutter. The trace of limit cycles energing from the critical equilibrium state can be either super-critical and stable, in analogy with a stable symmetric static bifurcation, or sub-critical and unstable, in analogy with an unstable symmetric static bifurcation. Galloping of a bluff body in a steady flow can be of the unstable type, and we might expect some form of imperfection sensitivity, although in contrast to static bifurcations, a Hopf bifurcation is actually topologically stable under the operation of a single control parameter: the form of the Hopf bifurcation cannot be rounded off or destroyed by imperfections as in the static case. However, since the dynamic instabilities are associated with a well defined and non-zero circular frequency we might expect the failure ‘load’ to be sensitive to resonant periodic forcing, and this is here shown to be the case, with a two-thirds power law sensitivity analogous to the static cusp.The conclusion is drawn that the concept of structural stability, vital as it is to good mathematical modelling, must be examined with care, particular attention being given to any restrictions on the class of allowable perturbations.  相似文献   

2.
To study the nonlinear phenomena of rotors in the sense of bifurcation theory, the mechanical model of a symmetric flexible rotor is investigated which is supported by two identical journal bearings. Two types of journal bearings are considered. While the oil whirl and oil whip oscillations of rotors in plain journal bearings are widely examined, the floating ring bearings cause a quite different vibration behavior with several mode interactions and an area of so-called critical limit cycles leading to a rotor damage. For both types a Hopf bifurcation marks the beginning of the self-excited oscillations in the case of a perfectly balanced rotor. By applying the methods of numerical continuation the occurring limit cycles as well as their stability are determined. The different nonlinear effects with the corresponding bifurcations are explained by describing the global solution behavior of the rotor-bearing systems. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A predator-prey system with disease in the prey is considered. Assume that the incidence rate is nonlinear, we analyse the boundedness of solutions and local stability of equilibria, by using bifurcation methods and techniques, we study Bogdanov-Takens bifurcation near a boundary equilibrium, and obtain a saddle-node bifurcation curve, a Hopf bifurcation curve and a homoclinic bifurcation curve. The Hopf bifurcation and generalized Hopf bifurcation near the positive equilibrium is analyzed, one or two limit cycles is also discussed.  相似文献   

4.
In this work, a Hopf bifurcation at infinity in three-dimensional symmetric continuous piecewise linear systems with three zones is analyzed. By adapting the so-called closing equations method, which constitutes a suitable technique to detect limit cycles bifurcation in piecewise linear systems, we give for the first time a complete characterization of the existence and stability of the limit cycle of large amplitude that bifurcates from the point at infinity. Analytical expressions for the period and amplitude of the bifurcating limit cycles are obtained. As an application of these results, we study the appearance of a large amplitude limit cycle in a Bonhoeffer–van der Pol oscillator.  相似文献   

5.
To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critical point O by Hopf bifurcation,the number of limit cycles depends on the different situations of separatrix cycle to be formed around O. If it is a homoclinic cycle passing through saddle S1 on 1 +ax-y = 0,which has the same stability with the limit cycle created by Hopf bifurcation,then the uniqueness of limit cycles in such cases can be proved. If it is a homoclinic cycle passing through saddle N on x= 0,which has the different stability from the limit cycle created by Hopf bifurcation,then it will be a case of two limit cycles. For the case when the separatrix cycle is a heteroclinic cycle passing through two saddles at infinity,the discussion of the paper shows that the number of limit cycles will change from one to two depending on the different values of parameters of system.  相似文献   

6.
This paper investigates both homoclinic bifurcation and Hopf bifurcation which occur concurrently in a class of planar perturbed discontinuous systems of Filippov type. Firstly, based on a geometrical interpretation and a new analysis of the so-called successive function, sufficient conditions are proposed for the existence and stability of homoclinic orbit of unperturbed systems. Then, with the discussion about Poincaré map, bifurcation analyses of homoclinic orbit and parabolic–parabolic (PP) type pseudo-focus are presented. It is shown that two limit cycles can appear from the two different kinds of bifurcation in planar Filippov systems.  相似文献   

7.
一个三维Chemostat竞争系统的Hopf分支和周期解   总被引:2,自引:0,他引:2  
周玉平  黄迅成 《应用数学》2006,19(2):388-394
本文研究了一个三维Chemostat竞争系统的解的结构,分析了平衡点的稳定性和当系统的某一微生物物种处于竞争劣势趋于灭绝时另一微生物物种和养料的二维流形上极限环的存在性,以及系统的Hopf分支问题.文中用Friedrich方法得到了系统存在Hopf分支的条件,并判定了周期解的稳定性.  相似文献   

8.
A cubic system having three homoclinic loops perturbed by Z3 invariant quintic polynomials is considered. By applying the qualitative method of differential equations and the numeric computing method, the Hopf bifurcation, homoclinic loop bifurcation and heteroclinic loop bifurcation of the above perturbed system are studied. It is found that the above system has at least 12 limit cycles and the distributions of limit cycles are also given.  相似文献   

9.
Abstract   Applying Hopf bifurcation theory and qualitative theory, we show that the general cubic Lienard equations with quadratic damping have at most three limit cycles. This implies that the guess in which the system has at most two limit cycles is false. We give the sufficient conditions for the system has at most three limit cycles or two limit cycles. We present two examples with three limit cycles or two limit cycles by using numerical simulation. Supported by the National Natural Science Foundation of China and National Key Basic Research Special Found (No. G1998020307).  相似文献   

10.
In this paper, a Leslie-type predator–prey system with simplified Holling type IV functional response and strong Allee effect on prey is proposed. The dissipativity of the system and the existence of all possible equilibria are investigated. The investigation emphasizes the exploring of bifurcation. It is shown that the system exists several non-hyperbolic positive equilibria, such as a weak focus of multiplicities one and two, (degenerate) saddle–nodes and Bogdanov–Takens singularities (cusp case) of codimensions 2 and 3. At these equilibria, it is proved that the system undergoes various kinds of bifurcations, such as saddle–node bifurcation, Hopf bifurcation, degenerate Hopf bifurcation and Bogdanov–Takens bifurcation of codimensions 2 and 3. With the parameters selected properly, there exhibits a limit cycle, a homoclinic loop, two limit cycles, a semistable limit cycle, or the simultaneous occurrence of a homoclinic loop and a limit cycle in the system. Moreover, it is also proved that the system has a cusp of codimension at least 4. Hence, there may exist three limit cycles generated from Hopf bifurcation of codimension 3. Numerical simulations are done to support the theoretical results.  相似文献   

11.
研究一类平面微分系统的极限环,利用Hopf分支理论得到了该系统极限环存在性与稳定性的若干充分条件,利用ЧеркасЛА和ЖилевычЛИ的唯一性定理得到了极限环唯一性的若干充分条件.  相似文献   

12.
An SMIB model in the power systems,especially that concering the effects of hard limits onbifurcations,chaos and stability is studied.Parameter conditions for bifurcations and chaos in the absence ofhard limits are compared with those in the presence of hard limits.It has been proved that hard limits can affectsystem stability.We find that (1) hard limits can change unstable equilibrium into stable one;(2) hard limits canchange stability of limit cycles induced by Hopf bifurcation;(3) persistence of hard limits can stabilize divergenttrajectory to a stable equilibrium or limit cycle;(4) Hopf bifurcation occurs before SN bifurcation,so the systemcollapse can be controlled before Hopf bifurcation occurs.We also find that suitable limiting values of hard limitscan enlarge the feasibility region.These results are based on theoretical analysis and numerical simulations,such as condition for SNB and Hopf bifurcation,bifurcation diagram,trajectories,Lyapunov exponent,Floquetmultipliers,dimension of attractor and so on.  相似文献   

13.
The stability and bifurcation of a van der Pol-Duffing oscillator with the delay feedback are investigated, in which the strength of feedback control is a nonlinear function of delay. A geometrical method in conjunction with an analytical method is developed to identify the critical values for stability switches and Hopf bifurcations. The Hopf bifurcation curves and multi-stable regions are obtained as two parameters vary. Some weak resonant and non-resonant double Hopf bifurcation phenomena are observed due to the vanishing of the real parts of two pairs of characteristic roots on the margins of the “death island” regions simultaneously. By applying the center manifold theory, the normal forms near the double Hopf bifurcation points, as well as classifications of local dynamics are analyzed. Furthermore, some quasi-periodic and chaotic motions are verified in both theoretical and numerical ways.  相似文献   

14.
In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 hyperbolic saddle points. It is found that this special quintic planar polynomial system has at least four large limit cycles which surround all singular points. By applying the double homoclinic loops bifurcation method and Hopf bifurcation method, we conclude that 28 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful for studying the weakened 16th Hilbert's Problem.  相似文献   

15.
In this paper, we study the dynamics of a mathematical model on primary and secondary cytotoxic T-lymphocyte (CTL) response to viral infections by Wodarz et al. This model has three equilibria and their stability criteria are discussed. The system transitions from one equilibrium to the next as the basic reproductive number, R0, increases. When R0 increases even further, we analytically show that periodic solutions may arise from the third equilibrium via Hopf bifurcation. Numerical simulations of the model agree with the theoretical results and these dynamics occur within biologically realistic parameter range. The normal form theory is also applied to find the amplitude, phase and stability information on the limit cycles. Biological implications of the results are discussed.  相似文献   

16.
In this paper, we investigated Hopf bifurcation by analyzing the distributed ranges of eigenvalues of characteristic linearized equation. Using communication delay as the bifurcation parameter, linear stability criteria dependent on communication delay have also been derived, and, furthermore, the direction of Hopf bifurcation as well as stability of periodic solution for the exponential RED algorithm with communication delay is studied. We find that the Hopf bifurcation occurs when the communication delay passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Finally, a numerical simulation is presented to verify the theoretical results.  相似文献   

17.
Hopf bifurcation which produces oscillations is a very important phenomena in the theory and application of dynamical systems. Almost all works available about Hopf bifurcations are related to a non-degenerate focus or center. For the case of a degenerate focus or center, the study of the bifurcations becomes challenge. In this paper, we consider the bifurcation of limit cycles for a quartic near-Hamiltonian system by perturbing a nilpotent center. We take coefficients as parameters, then we can get six limit cycles.  相似文献   

18.
In this paper, a class of simplified Type-IV predator-prey system with linear state feedback is investigated. We prove the boundedness of the positive solutions to this system, and analyze the quality of the equilibria and the existence of limit cycles of the system surrounding the positive equilibra. By Hopf bifurcation theory, the result of having two limit cycles to the system is obtained.  相似文献   

19.
This work represents Hopf bifurcation analysis of a general non-linear differential equation involving time delay. A special form of this equation is the Hutchinson–Wright equation which is a mile stone in the mathematical modeling of population dynamics and mathematical biology. Taking the delay parameter as a bifurcation parameter, Hopf bifurcation analysis is studied by following the theory in the book by Hazzard et al. By analyzing the associated characteristic polynomial, we determine necessary conditions for the linear stability and Hopf bifurcation. In addition to this analysis, the direction of bifurcation, the stability and the period of a periodic solution to this equation are evaluated at a bifurcation value by using the Poincaré normal form and the center manifold theorem. Finally, the theoretical results are supported by numerical simulations.  相似文献   

20.
研究了小周期扰动对一类存在Hopf分支的非线性系统的影响.特别是应用平均法讨论了扰动频率与Hopf分支固有频率在共振及二阶次调和共振的情形周期解分支的存在性.表明了在某些参数区域内,系统存在调和解分支和次调和解分支,并进一步讨论了二阶次调和分支周期解的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号