首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mathematical work of Thomas Harriot (c. 1560–1621) is distinguished by extensive use of symbolism and other forms of visual imagery and by systematic use of combinations. This paper argues that these characteristics of his mathematical writing were already observable in the mid-1580s, in the phonetic alphabet he devised to record the speech of American Indians. The paper presents several little-known examples of Harriot's mathematics, demonstrating his use of symbolism both as a means of expression and as an analytic tool, and assesses Harriot's work in relation to the broader 17th-century trend toward symbolization in mathematics.  相似文献   

2.
This paper may be understood as a continuation of Topsoe's seminal paper [F. Topsoe, Compactness in spaces of measures, Studia Math. 36 (1970) 195-212] to characterize, within an abstract setting, compact subsets of finite inner regular measures w.r.t. the weak topology. The new aspect is that neither assumptions on compactness of the inner approximating lattices nor nonsequential continuity properties for the measures will be imposed. As a providing step also a generalization of the classical Portmanteau lemma will be established. The obtained characterizations of compact subsets w.r.t. the weak topology encompass several known ones from literature. The investigations rely basically on the inner extension theory for measures which has been systemized recently by König [H. König, Measure and Integration, Springer, Berlin, 1997; H. König, On the inner Daniell-Stone and Riesz representation theorems, Doc. Mat. 5 (2000) 301-315; H. König, Measure and integration: An attempt at unified systematization, Rend. Istit. Mat. Univ. Trieste 34 (2002) 155-214].  相似文献   

3.
The mathematician John von Neumann was born in Hungary but principally received his scientific education and socialization in the German science system. He received his Habilitation from the Friedrich-Wilhelms–Universität in Berlin in 1927, where he lectured as a Privatdozent until his emigration to the USA. This article aims at making a contribution to this early part of Neumann’s scientific biography by analyzing in detail the procedure that led to his Habilitation as well as the beginnings of Neumann’s research on functional analysis. An analysis of the relevant sources shows that in Berlin in the year 1927 Neumann was not yet regarded as the outstanding mathematical genius of the 20th century. Furthermore it will be seen that Neumann had great difficulties in developing the fundamental concepts for his path breaking work in spectral theory and only managed to do so with the support of the Berlin mathematician Erhard Schmidt.  相似文献   

4.
5.
We give a necessary and sufficient condition for a certain set of infinite products of linear operators to be zero. We shall investigate also the case when this set of infinite products converges to a non-zero operator. The main device in these results is a weighted version of the König Lemma for infinite trees in graph theory.

  相似文献   


6.
The goal of this paper is to provide an extensive account of Robert Leslie Ellis?s largely forgotten work on philosophy of science and probability theory. On the one hand, it is suggested that both his ‘idealist’ renovation of the Baconian theory of induction and a ‘realism’ vis-à-vis natural kinds were the result of a complex dialogue with the work of William Whewell. On the other hand, it is shown to what extent the combining of these two positions contributed to Ellis?s reformulation of the metaphysical foundations of traditional probability theory. This parallel is assessed with reference to the disagreement between Ellis and Whewell on the nature of (pure) mathematics and its relation to scientific knowledge.  相似文献   

7.
This paper addresses three questions related to George Berkeley’s theory of compensating errors in the calculus published in 1734. The first is how did Berkeley conceive of Leibnizian differentials? The second and most central question concerns Berkeley’s procedure which consisted in identifying two quantities as errors and proving that they are equal. The question is how was this possible? The answer is that this was not possible, because in his calculations Berkeley misguided himself by employing a result equivalent to what he wished to prove. In 1797 Lazare Carnot published the expression “a compensation of errors” in an attempt to explain why the calculus functions. The third question is: did Carnot by this expression mean the same as Berkeley?  相似文献   

8.
The little-known Scottish mathematician William Spence was an able analyst, one of the first in Britain to be conversant with recent continental advances, and having original views. His major work on “logarithmic transcendents” gives the first detailed account of polylogarithms and related functions. A theory of algebraic equations was published just after his early death; and further essays, edited by John Herschel, were published posthumously. The most substantial of these concern an extension of his work on “logarithmic transcendents”, and the general solution of linear differential and difference equations. But awareness of Spence?s works was long delayed by their supposed unavailability. Spence?s life, the story of his “lost” publications, and a summary of all his essays are here described.  相似文献   

9.
Harald Gropp 《Acta Appl Math》1998,52(1-3):271-276
The graph-theoretical theorem of D. König on the existence of a 1-factor in a regular bipartite graph of 1914 was already proved 20 years earlier in the dissertation of E. Steinitz in Breslau (1894) in the language of configurations.  相似文献   

10.
Akin to the mathematical recreations, John Wilkins' Mathematicall Magick ( 1648) elaborates the pleasant, useful and wondrous part of practical mathematics, dealing in particular with its material culture of machines and instruments. We contextualize the Mathematicall Magick by studying its institutional setting and its place within changing conceptions of art, nature, religion and mathematics. We devote special attention to the way Wilkins inscribes mechanical innovations within a discourse of wonder. Instead of treating ‘wonder’ as a monolithic category, we present a typology, showing that wonders were not only recreative, but were meant to inspire Wilkins' readers to new mathematical inventions.  相似文献   

11.
12.
In this extended study of Proposition VI, and its first corollary, in Book I of Newton's Principia, we clarify both the statements and the demonstrations of these fundamental results. We begin by tracing the evolution of this proposition and its corollary, to see how their texts may have changed from their initial versions. To prepare ourselves for some of the difficulties our study confronts, we then examine certain confusions which arise in two recent commentaries on Proposition VI. We go on to note other confusions, not in any particular commentary, but in Newton's demonstration and, especially, in his statement of the proposition. What, exactly, does Newton mean by a “body [that] revolves … about an immobile center”? By a “just-nascent arc”? By the “sagitta of the arc”? By the “centripetal force”? By “will be as”? We search for the mathematical meanings that Newton has in mind for these fragments of the Proposition VI statement, a search that takes us to earlier sections of the Principia and to discussions of the “method of first and last ratios,” centripetal force, and the second law of motion. The intended meaning of Proposition VI then emerges from the combined meanings of these fragments. Next we turn to the demonstration of Proposition VI, noting first that Newton's own argument could be more persuasive, before we construct a modern, more rigorous proof. This proof, however, is not as simple as one might expect, and the blame for this lies with the “sagitta of the arc,” Newton's measure of deflection in Proposition VI. Replacing the sagitta with a more natural measure of deflection, we obtain what we call Platonic Proposition VI, whose demonstration has a Platonic simplicity. Before ending our study, we examine the fundamental first corollary of Proposition VI. In his statement of this Corollary 1, Newton replaces the sagitta of Proposition VI by a not quite equal deflection from the tangent and the area swept out (which represents the time by Proposition I) by a not quite equal area of a triangle. These two approximations create small errors, but are these errors small enough? Do the errors introduced by these approximations tend to zero fast enough to justify these replacements? Newton must believe so, but he leaves this question unasked and unanswered, as have subsequent commentators on this crucial corollary. We end our study by asking and answering this basic question, which then allows us to give Corollary 1 a convincing demonstration.  相似文献   

13.
In this article, a discussion and analysis is presented of the Kujang sulhae by Nam Pyoˇng-Gil (1820-1869), a 19th-century Korean commentary on the Jiuzhang suanshu. Nam copied the problems and procedures from the ancient Chinese classic, but replaced Liu Hui’s and Li Chunfeng’s commentaries with his own. In his postface Nam expressed his dissatisfaction with the earlier commentaries, because the approaches of Liu and Li did not match those of his contemporary readers well. This can be seen from the most important features of Nam’s commentary: the use of a synthesis of European and Chinese mathematical methods, easy explanations appealing to intuition, and disuse of the methods of infinitesimals and limits in Liu’s and Li’s commentaries. Based on his own postface and these features of his commentary, I believe that Nam Pyoˇng-Gil treated the Jiuzhang suanshu as a very important historical document, which he intended to explain according to the new mathematical canon in both Qing China and Chosoˇn Korea, the Shuli jingyun. Thus the Kujang sulhae is an example of the endeavor of 19th-century Korean mathematicians to reinterpret ancient Chinese mathematical texts with their contemporary knowledge.  相似文献   

14.
John Wallis, Savilian professor of geometry at Oxford from 1649 to 1703, engaged in a number of disputes with French mathematicians: with Fermat (in 1657–1658), with Pascal (in 1658–1659), with Dulaurens (in 1667–1668), and against Descartes (in the early 1670s). This paper examines not only the mathematical content of the arguments but also Wallis’s various strategies of response. Wallis’s opinion of French mathematicians became increasingly bitter, but at the same time he was able to use the confrontations to promote his own reputation.  相似文献   

15.
The article is devoted to Edouard Lucas's contribution to the development of mathematical recreations in the France of the post 1870 war period. Lucas's name is associated to four volumes of Récréations mathématiques published between 1882 and 1894 (the last two having been published posthumously) and to a posthumous volume L'Arithmétique amusante, which appeared in 1895. The author analyzes the context of reform of science education in relation to which mathematical recreations appeared as a means of attracting a wider public to scientific activities and inspiring young people to study science. The article brings to light how the milieu of new associations which took shape to promote science (Association Française pour l'Avancement des Sciences, Société Mathématique de France) allowed the constitution of social groups internationally connected and quite active in the promotion and development of mathematical recreations. Lastly, the article suggests that this type of mathematical activity allowed the cultivation of fields that at the time the French academic milieu perceived as marginal such as number theory and analysis situs as well as their applications.  相似文献   

16.
In 1803 Louis Poinsot published a textbook on statics, in which he made clear that the subject dealt not only with forces but also with ‘couples’ (his word), pairs of coplanar non-collinear forces equal in magnitude and direction but opposite in sense. His innovation was not understood or even welcomed by some contemporary mathematicians. Later he adapted his theory to put forward a new relationship between rectilinear and rotational motion in dynamics; its reception was more positive, although not always appreciative of the generality. After summarising the creation of these two theories and noting their respective receptions, this paper considers his advocacy of spatial and geometrical thinking in mechanics and the fact that, despite its importance, historians of statics who cover his period usually ignore his theory of couples.  相似文献   

17.
Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly “meaningless” signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions ( and ). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates Hilbert's account of mathematical objectivity, axiomatics, idealization, and consistency.  相似文献   

18.
Descartes' “multiplicative” theory of equations in the Géométrie (1637) systematically treats equations as polynomials set equal to zero, bringing out relations between equations, roots, and polynomial factors. We here consider this theory as a response to Peter Roth's suggestions in Arithmetica Philosophica (1608), notably in his “seventh-degree” problem set. These specimens of arithmetic-masterly problem design develop skills with multiplicative and other degree-independent techniques. The challenges were fine-tuned by introducing errors disguised as printing errors. During Descartes' visit to Germany in 1619–1622, he probably worked with Johann Faulhaber (1580–1635) on these problems; they are discussed in Faulhaber's Miracula Arithmetica (1622), which also looks forward to fuller publication, probably by Descartes.  相似文献   

19.
《Quaestiones Mathematicae》2013,36(3):427-447
Abstract

On 19 September 1997, Richard Wiegandt celebrated his 65th birthday. As can be seen from his impressive list of publications, he is one of the most active algebraists of the last forty years working mostly in ring theory and related topics. The present note, which is an extended version of an invited talk given at the ICOR 97, is intended to show up some highlights in Richard Wiegandt's development in radical theory, one of his main points of interest. It is thus far away from presenting a complete overview of Wiegandt's scientific work. Some emphasis is given to his older papers, maybe less known to the actual radical community.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号