共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
基于SIMP插值模型的渐进结构优化方法 总被引:3,自引:3,他引:3
在传统渐进结构优化算法(ESO)及带惩罚的变密度法(SIMP)的基础上,本文提出将二者相结合的基于SIMP插值模型的渐进结构优化算法.该方法通过缩小传统ESO算法中的进化步长,从而缩小了由于进化步长过大而导致的敏度评估误差,使得ESO算法在合理性及通用性上获得了较大改善.数值算例表明,该方法在保持了常规ESO方法的优点的同时,拥有更高的稳定性和可靠性. 相似文献
4.
利用导重法进行结构拓扑优化 总被引:1,自引:2,他引:1
介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。 相似文献
5.
6.
随机载荷是工程结构在服役中经常承受的一种复杂的载荷形式,通常采用统计学特性对其进行描述。对随机载荷作用下的结构进行拓扑优化设计是一项极具挑战性的工作,其主要难点在于,(1) 传统隐式拓扑优化方法的设计变量数巨大,且用于结构动态性能拓扑优化问题时存在虚假模态等数值不稳定问题; (2) 对结构的随机动力响应统计量及其灵敏度进行计算需要极大的计算量; (3) 隐式拓扑优化框架下的分析模型与优化模型强耦合,导致结构有限元模型具有极高的自由度,进一步加剧了上述困难。本文基于移动可变形组件框架和虚拟激励法理论,提出了一种平稳随机载荷作用下结构的显式拓扑优化设计方法。通过将一系列可移动和可变形的结构组件作为优化的基础单元,实现了使用少量设计变量描述结构拓扑构型的目的。采用虚拟激励法、自由度删除技术和模态位移法有效降低了对结构进行随机振动分析和灵敏度分析的计算量。在此基础上,以结构柔顺度的标准差为目标函数、以设计域内实体材料的体积为约束条件,实现了限带白噪声作用下结构的拓扑优化设计,并通过数值算例验证了本文方法的有效性。 相似文献
7.
基于拓扑描述函数的连续体结构拓扑优化方法 总被引:14,自引:0,他引:14
提出了一种利用拓扑描述函数(TDF)作为拓扑设计变量求解连续体结构拓扑优化问题
的新方法. 优化问题的目标函数是结构的整体柔顺性,约束条件为对于可利用材料的体积限
制. 这种方法不仅可以消除拓扑优化中经常出现的棋盘格式等数值不稳定现象,而且能够有
效地抑制传统算法处理此类优化问题时所引发的边界扩散效应. 与其它的基于水平集描述函
数的拓扑优化方法相比,所提出的算法不仅无需求解控制水平集函数演化的双曲守恒方
程,而且合理地考虑了目标函数的拓扑导数信息,因而使得算法的计算效率有了显著的提高. 相似文献
8.
9.
应用K-S (Kreisselmeier–Steinhauser)函数,对结构拓扑优化问题中的局部性能如应力、疲劳寿命等进行集成然后求解。首先针对互逆规划的单目标多约束模型(称为s方模型)及多目标单约束模型(称为m方模型),应用结构拓扑优化ICM方法,分别建立了基于K-S函数集成处理的优化模型,推导了集成化的约束(对s方模型)或目标(对m方模型)函数的一阶及二阶导数,采用序列二次规划模型对所建立的优化模型进行迭代求解,依据K-T条件给出了二次规划模型的迭代求解公式。然后基于K-S函数阐述了s方模型的集成迭代解法,亦即集成方法。最后,阐述了基于K-S函数的s方模型和m方模型交替融合的迭代解法,亦即集成-集成方法。结果表明集成-集成方法比单纯的集成方法收敛更快。 相似文献
10.
11.
结构拓扑优化ICM方法的改善 总被引:35,自引:1,他引:35
对结构拓扑优化的ICM(独立、连续、映射)方法进行了深入探讨,通
过选取不同的过滤函数可以不进行每步删除而得到清晰的拓扑图形. 以位移约束为例阐述了
ICM方法建模及求解过程. 对位移约束、频率约束、位移及频率约束、简谐载荷激励下动位
移幅值约束等拓扑优化进行了研究,计算算例表明ICM方法在处理静力问题及动力问题的拓
扑优化都是可行的. 程序算法都在MSC.Nastran及MSC.Patran的二次开发环境下实现,与
原软件有机结合在一起. 相似文献
12.
The present paper studies topology optimization of truss structures in multiple loading cases and with stress constraints.
It is pointed out in the paper that the special difficulty of adding bars and/or deleting bars from structure in the numerical
algorithm of truss topology optimization is caused by the discontinuity of stress functions at the zero cross sectional area
in the conventional formulation. In a new formulation, we replace the stress constraints by new constraints. The new constraints
retain the same feasibility of the stress constraints, but are continuous in the closed interval up to zero cross sectional
area. The new formulation enables us to solve topology optimization problem in the frame of the existing FEM software and
mathematical programming techniques. Powell constrained variable metric method is applied to a number of examples of truss
topology optimization. Numerical performances of the two formulations are compared. It is shown that in the conventional formulation
the iteration of numerical algorithm may be blocked by discontinuity of the stress constraint and often stops at a nonoptimum
solution. And in the new formulation the bar adding and bar deleting is done rationally and a local optimum, even the global
optimum can be obtained by iteration.
The project supported by the National Natural Science Foundation of China 相似文献
13.
结构拓扑优化的变量连接,是通过对设计变量之间添加约束关系,从而得到特定的拓扑优化构型,使得优化结果能够满足工程上的特殊要求和工艺制造技术的限制。针对拓扑优化中的几类过滤形式及灵敏度分析,给出了考虑变量连接的计算公式;基于自主研发的SiPESC软件集成化平台,在SiPESC .TOPO拓扑优化模块上进行二次开发,构建了拓扑优化的变量连接算法框架,其核心思想是基于面向对象设计方法和软件设计模式,实现算法与数据分离。详细阐述了变量连接的作用方式,以及软件框架通用接口设计方案,并通过数值算例验证了其在静力问题、动力问题和热传导问题上的可行性。 相似文献
14.
统一骨架与连续体的结构拓扑优化的ICM理论与方法 总被引:20,自引:5,他引:20
技术了基于ICM方法的结构拓扑优化新模型并应用于骨架与连续体结构。ICM方法意指独立、连续变量与映射及其反演。新模型将两种结构统一建立了具有重量目标函数和多工况下应力与位移约束下的优化问题,提出的过滤函数是ICM方法的关键技术之一。说明了优化策略与算法。 相似文献
15.
在结构优化中,拓扑优化相比于尺寸优化和形状优化,设计空间更加广泛,因而能够取得更大的效益.近年来,结构拓扑优化逐渐成为人们研究的热点和难点.随着科学技术的发展,工程结构越来越复杂,材料本身和外部环境的不确定性影响加剧,因此在拓扑优化中需要考虑不确定性的影响.本文研究了桁架结构的非概率可靠性拓扑优化问题,用区间模型来量化... 相似文献
16.
Combining the vector level set model, the shape sensitivity analysis theory with the gradient projection technique, a level
set method for topology optimization with multi-constraints and multi-materials is presented in this paper. The method implicitly
describes structural material interfaces by the vector level set and achieves the optimal shape and topology through the continuous
evolution of the material interfaces in the structure. In order to increase computational efficiency for a fast convergence,
an appropriate nonlinear speed mapping is established in the tangential space of the active constraints. Meanwhile, in order
to overcome the numerical instability of general topology optimization problems, the regularization with the mean curvature
flow is utilized to maintain the interface smoothness during the optimization process. The numerical examples demonstrate
that the approach possesses a good flexibility in handling topological changes and gives an interface representation in a
high fidelity, compared with other methods based on explicit boundary variations in the literature.
The project supported by the National Natural Science Foundation of China (59805001, 10332010) and Key Science and Technology
Research Project of Ministry of Education of China (No.104060) 相似文献
17.
18.
相对尺寸优化和形状优化,结构拓扑优化可以更大程度上节约材料和改善设计;实际工程中必然存在着各种不确定性因素,从而考虑不确定性的可靠性拓扑优化逐渐成为研究热点。本文考虑载荷和材料参数的不确定性,采用功能度量法进行可靠性评估,基于变密度法开展了刚性结构的可靠性拓扑优化设计。通过四角支撑平面板、L型梁和二维三维悬臂梁算例,分析拓扑构型与体积分数随目标可靠指标、随机变量个数以及变异系数的变化情况,结果表明,可靠性拓扑优化设计能得到既符合最优传力路径又满足可靠性要求的刚性结构。 相似文献
19.
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable. 相似文献
20.
This paper presents a study on the concurrent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new type of design variable. The new model is based on the assumptions that a structure is made of a material with the same microstructure, and the material may have a different orientation within the design domain of the structure. The homogenization theory is applied to link the material and structure scales. An additional post-processing technique is developed for modifying the obtained design to avoid local optima caused by the use of orientation angle variables.Numerical examples are presented to illustrate the viability and effectiveness of the proposed model. It is found that significant improvement in structural performance can be achieved by optimizing the orientation of microstructures in concurrent topology optimization of structures and materials. 相似文献