首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents analytical Green’s function solutions for an isotropic elastic half-space subject to anti-plane shear deformation. The boundary of the half-space is modeled as a material surface, for which the Gurtin–Murdoch theory for surface elasticity is employed. By using Fourier cosine transform, analytical solutions for a point force applied both in the interior or on the boundary of the half-space are derived in terms of two particular integrals. Through simple numerical examples, it is shown that the surface elasticity has an important influence on the elastic field in the half-space. The present Green’s functions can be used in boundary element method analysis of more complicated problems.  相似文献   

2.
修正的偶应力线弹性理论及广义线弹性体的有限元方法   总被引:1,自引:0,他引:1  
以含偶应力的弹性理论为基础,考虑小变形情况下变形体的平动变形和旋转变形,提出关于偶应力与曲率张量的线性本构关系,建立一般弹性体的线性模型。为满足有限单元C1连续性要求,考虑转角为独立变量,利用罚方法引入约束条件,构造一般弹性体的约束变分形式。应用8节点48个自由度的实体等参元,建立一般弹性体力学响应分析的有限元方程。对悬臂梁的静力和动力分析表明,一般弹性体模型较之经典弹性力学更适合结构分析;较之Timoshenko梁模型,一般弹性体模型能够计及结构尺度对结构动力特性和动力响应造成的显著影响。  相似文献   

3.
This paper gives a unified approach to analyze two-dimensional elastic deformations of a composite body consisting of two dissimilar anisotropic or isotropic materials perfectly bonded along a planar interface. The Eshelby et al. formalism of anisotropic elasticity is linked with that of Kolosov-Muskhelishvili for isotropic elasticity by means of two complex matrix functions describing completely the arising elastic fields. These functions, whose elements are holomorphic functions, are defined as the two-phase potentials of the bimaterial. The present work is concerned with bi-materials whose constituent materials occupy the whole space and are connected by a planar interface. The elastic fields arising in such a bimaterial are given by universal relationships in terms of the two-phase potentials. Then, the general results obtained are implemented to study two interesting bimaterial problems: the problem of a uniformly stressed bimaterial with a perfect interfacial bonding, and the interface crack problem of a bimaterial with a general loading. For both problems, all combinations of the elastic properties of the constituent materials are considered. For the first problem, the constraints, which must be imposed between the components of the applied uniform stress fields, are established, so that they are admissible as elastic fields of the bimaterial. For the interface crack problem, the solution is obtained for a general loading applied in the body. Detailed results are given for the case of a remote uniform stress field applied to the bimaterial constituents.  相似文献   

4.
Consider a set of (N+1)-phase concentric spherical ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic and is functionally graded (FG) in the radial direction. Determination of the elastic fields when the outermost spherical surface is subjected to a nonuniform loading and the constituent phases are subjected to some prescribed nonuniform body force and eigenstrain fields is of interest. When the outermost layer is an unbounded medium with zero eigenstrain and body force fields, then an N-phase multi-inhomogeneous inclusion problem is realized. Based on higher-order spherical harmonics, presenting a three-dimensional strain formulation with a robust form of compatibility equations, a spectral theory of elasticity in the spherical coordinate system is developed. Application of the established spectral theory leads to the exact closed-form solution when the elastic moduli of each phase vary as power-law functions of radius.  相似文献   

5.
The time-harmonic dynamical stress field in a system comprising a pre-stressed orthotropic layer and orthotropic half-plane is studied within the scope of the piecewise homogeneous body model utilizing the three-dimensional linearized theory of elastic waves in an initially stressed body. The main focus is on the influence of the mechanical properties of the constituent materials and the initial stresses present on the “resonance” values of the normal stress acting on the interface plane and on the “resonance” values of the frequency of the external point-located force. The numerical results are presented and discussed. In particular, it is shown that the values of the normal stress decrease with a decrease in the modulus of elasticity of the materials along the thickness of the covering layer.  相似文献   

6.
In the present paper, we study the torsional wave propagation along a micro-tube with clogging attached to its inner surface. The clogging accumulated on the inner surface of the tube is modeled as an "elastic membrane" which is described by the so-called surface elasticity.A power-series solution is particularly developed for the lowest order of wave propagation.The dispersion diagram of the lowest-order wave is numerically presented with the surface(clogging) effect.  相似文献   

7.
具有非局部体力矩的非局部弹性理论   总被引:6,自引:0,他引:6  
高键  戴天民 《力学学报》1990,22(4):446-456
本文基于非局部连续统场论的公理系统,建立了具有非局部体力矩作用的非局部弹性理论,我们证明了,在非局部弹性固体中存在着非局部体力矩,非局部体力矩引起了应力的非对称和非局部体力矩是由材料中的共价键产生的。  相似文献   

8.
In this paper, we discuss various formats of gradient elasticity and their performance in static and dynamic applications. Gradient elasticity theories provide extensions of the classical equations of elasticity with additional higher-order spatial derivatives of strains, stresses and/or accelerations. We focus on the versatile class of gradient elasticity theories whereby the higher-order terms are the Laplacian of the corresponding lower-order terms. One of the challenges of formulating gradient elasticity theories is to keep the number of additional constitutive parameters to a minimum. We start with discussing the general Mindlin theory, that in its most general form has 903 constitutive elastic parameters but which were reduced by Mindlin to three independent material length scales. Further simplifications are often possible. In particular, the Aifantis theory has only one additional parameter in statics and opens up a whole new field of analytical and numerical solution procedures. We also address how this can be extended to dynamics. An overview of length scale identification and quantification procedures is given. Finite element implementations of the most commonly used versions of gradient elasticity are discussed together with the variationally consistent boundary conditions. Details are provided for particular formats of gradient elasticity that can be implemented with simple, linear finite element shape functions. New numerical results show the removal of singularities in statics and dynamics, as well as the size-dependent mechanical response predicted by gradient elasticity.  相似文献   

9.
In this paper, a nonlinear theory of nonlocal asymmetric, elastic solids is developed on the basis of basic theories of nonlocal continuum fieM theory and nonlinear continuum mechanics. It perfects and expands the nonlocal elastic fiteld theory developed by Eringen and others. The linear theory of nonlocal asymmetric elasticity developed in [1] expands to the finite deformation, We show that there is the nonlocal body moment in the nonlocal elastic solids. The noniocal body moment causes the stress asymmetric and itself is caused by the covalent bond formed by the reaction between atoms. The theory developed in this paper is applied to explain reasonably that curves of dispersion relation of one-dimensional plane longitudinal waves are not similar with those of transverse waves.  相似文献   

10.
Classical elasticity is concerned with bodies that can be modeled as smooth manifolds endowed with a reference metric that represents local equilibrium distances between neighboring material elements. The elastic energy associated with the configuration of a body in classical elasticity is the sum of local contributions that arise from a discrepancy between the actual metric and the reference metric. In contrast, the modeling of defects in solids has traditionally involved extra structure on the material manifold, notably torsion to quantify the density of dislocations and non-metricity to represent the density of point defects. We show that all the classical defects can be described within the framework of classical elasticity using tensor fields that only assume a metric structure. Specifically, bodies with singular defects can be viewed as affine manifolds; both disclinations and dislocations are captured by the monodromy that maps curves that surround the loci of the defects into affine transformations. Finally, we showthat two dimensional defectswith trivial monodromy are purely local in the sense that if we remove from the manifold a compact set that contains the locus of the defect, the punctured manifold can be isometrically embedded in a Euclidean space.  相似文献   

11.
A new constant displacement discontinuity element was presented in a previous paper applied initially for the numerical solution of either isolated straight cracks or for co-linear cracks of the three fundamental deformation modes I, II and III due to the special form of the solution. It was based on the strain-gradient elasticity theory in its simplest possible Grade-2 variant. The assumption of the G2 expression for the stresses has resulted to a better average stress value at the mid-point of the straight displacement discontinuity compared to the classical elasticity solution. This new element gave considerably better predictions of the stress intensity factors compared to the constant displacement discontinuity element and the linear displacement discontinuity element. Moreover, it preserved the simplicity and hence the high speed of computations. In this Part I, the solution for this element is extended for the analysis of cracks of arbitrary shape in an infinite plane isotropic elastic body and it is validated against three known analytical solutions.  相似文献   

12.
Material frame indifference implies that the solution in non-linear elasticity theory for a connected body rigidly rotated at its border is a rigid, stress-free, deformation. If the same problem is considered within linear elasticity theory, considered as an approximation to the true elastic situation, one should expect that if the angle of rotation is small, the body still undergoes a rigid deformation while the corresponding stress, though not zero, remains consistently small. Here, we show that this is true, in general, only for homogeneous bodies. Counterexamples of inhomogeneous bodies are presented for which, whatever small the angle of rotation is, the linear elastic solution is by no means a rigid rotation (in a particular case it is an “explosion”) while the stress may even become infinite. If the same examples are re-interpreted as problems in an elasticity theory based upon genuinely linear constitutive relations which retain their validity also for finite deformations, it is shown that they would deliver constraint reaction forces that are not in equilibrium in the actual, deformed, state. This furnishes another characterization of the impossibility of an exact linear constitutive theory for elastic solids with zero residual stress.   相似文献   

13.
基于各向异性体平面弹性理论中的复势方法,应用杂交变分原理建立了一种与常规有限元相协调的含任意椭圆核各向异性板杂交应力有限元,采用该杂交应力有限元来描述层板的椭圆核区域,采用杆单元来描述加强筋(杆单元的刚度取为层板沿筋条方向的刚度),其余区域采用常规8节点等参单元进行模拟,建立起分析含多椭圆核复合材料加筋壁板问题的力学分析方法,详细讨论了椭圆核大小、位置、筋条尺寸、相对位置、铺层比例等诸参数的影响规律,得到了一些有益的结论。  相似文献   

14.
Bounds for the torsional rigidity of elastic ring   总被引:1,自引:0,他引:1  
A torsion problem of the elastic ring is formulated in the framework of the linear theory of elasticity. The meridian section of the ring-like body is bounded by coordinate lines of a plane orthogonal curvilinear coordinate system. The paper concentrates the torsional rigidity of the elastic ring which can be derived from Michell's theory. Upper and lower bound formulas for the torsional rigidity are presented, examples illustrate the application of bounding formulas obtained from two minimum theorems of elasticity. All expositions are based on the usual assumptions of the linear theory of elasticity.  相似文献   

15.
A mathematical model for predicting the vibrations of ice-shelves based on linear elasticity for the ice-shelf motion and potential flow for the fluid motion is developed. No simplifying assumptions such as the thinness of the ice-shelf or the shallowness of the fluid are made. The ice-shelf is modelled as a two-dimensional elastic body of an arbitrary geometry under plane-strain conditions. The model is solved using a coupled finite element method incorporating an integral equation boundary condition to represent the radiation of energy in the infinite fluid. The solution is validated by comparison with thin-beam theory and by checking energy conservation. Using the analyticity of the resulting linear system, we show that the finite element solution can be extended to the complex plane using interpolation of the linear system. This analytic extension shows that the system response is governed by a series of singularities in the complex plane. The method is illustrated through time-domain simulations as well as results in the frequency domain.  相似文献   

16.
The present study aims at determining the elastic stress and displacement fields around the tips of a finite-length crack in a microstructured solid under remotely applied plane-strain loading (mode I and II cases). The material microstructure is modeled through the Toupin-Mindlin generalized continuum theory of dipolar gradient elasticity. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain tensor (as in classical elasticity) and the gradient of the strain tensor (additional term). A simple but yet rigorous version of the theory is employed here by considering an isotropic linear expression of the elastic strain-energy density that involves only three material constants (the two Lamé constants and the so-called gradient coefficient). First, a near-tip asymptotic solution is obtained by the Knein-Williams technique. Then, we attack the complete boundary value problem in an effort to obtain a full-field solution. Hypersingular integral equations with a cubic singularity are formulated with the aid of the Fourier transform. These equations are solved by analytical considerations on Hadamard finite-part integrals and a numerical treatment. The results show significant departure from the predictions of standard fracture mechanics. In view of these results, it seems that the classical theory of elasticity is inadequate to analyze crack problems in microstructured materials. Indeed, the present results indicate that the stress distribution ahead of the crack tip exhibits a local maximum that is bounded. Therefore, this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur. Also, in the vicinity of the crack tip, the crack-face displacement closes more smoothly as compared to the standard result and the strain field is bounded. Finally, the J-integral (energy release rate) in gradient elasticity was evaluated. A decrease of its value is noticed in comparison with the classical theory. This shows that the gradient theory predicts a strengthening effect since a reduction of crack driving force takes place as the material microstructure becomes more pronounced.  相似文献   

17.
A model for the mechanics of woven fabrics is developed in the framework of two-dimensional elastic surface theory. Thickness effects are modeled indirectly in terms of appropriate constitutive equations. The model accounts for the strain of the fabric and additional effects associated with the normal bending, geodesic bending, and twisting of the constituent fibers.  相似文献   

18.
The technique of distributed dislocations proved to be in the past an effective approach in studying crack problems within classical elasticity. The present work is intended to extend this technique in studying crack problems within couple-stress elasticity, i.e. within a theory accounting for effects of microstructure. This extension is not an obvious one since rotations and couple-stresses are involved in the theory employed to analyze the crack problems. Here, the technique is introduced to study the case of a mode I crack. Due to the nature of the boundary conditions that arise in couple-stress elasticity, the crack is modeled by a continuous distribution of climb dislocations and constrained wedge disclinations (the concept of ‘constrained wedge disclination’ is first introduced in the present work). These distributions create both standard stresses and couple stresses in the body. In particular, it is shown that the mode-I case is governed by a system of coupled singular integral equations with both Cauchy-type and logarithmic kernels. The numerical solution of this system shows that a cracked solid governed by couple-stress elasticity behaves in a more rigid way (having increased stiffness) as compared to a solid governed by classical elasticity. Also, the stress level at the crack-tip region is appreciably higher than the one predicted by classical elasticity.  相似文献   

19.
各向异性非线性固体力学的规范空间理论   总被引:8,自引:0,他引:8  
本文在弹性规范空间概念基础上,利用非平衡态热力学理论,证明了各向异性固体力学非线性问题规范空间场以及不可逆过程本征解的存在。损伤对结构刚度的弱化效应和损伤诱发各向异性效应分别反映在本征弹性和相应的模态向量中。在简正坐标中考察各向异性体变形时,材料的行为以六个普通的粘弹性Maxwell方程描述,总的响应由模态叠加得到。以此为基础给出的非线性本构方程具有坐标转换不变性,最后给出了二个具体的算例。  相似文献   

20.
We present a field formulation for defects that draws from the classical representation of the cores as force dipoles. We write these dipoles as singular distributions. Exploiting the key insight that the variational setting is the only appropriate one for the theory of distributions, we arrive at universally applicable weak forms for defects in nonlinear elasticity. Remarkably, the standard, Galerkin finite element method yields numerical solutions for the elastic fields of defects that, when parameterized suitably, match very well with classical, linearized elasticity solutions. The true potential of our approach, however, lies in its easy extension to generate solutions to elastic fields of defects in the regime of nonlinear elasticity, and even more notably for Toupin's theory of gradient elasticity at finite strains (Toupin Arch. Ration. Mech. Anal., 11 (1962) 385). In computing these solutions we adopt recent numerical work on an isogeometric analytic framework that enabled the first three-dimensional solutions to general boundary value problems of Toupin's theory (Rudraraju et al. Comput. Methods Appl. Mech. Eng., 278 (2014) 705). We first present exhaustive solutions to point defects, edge and screw dislocations, and a study on the energetics of interacting dislocations. Then, to demonstrate the generality and potential of our treatment, we apply it to other complex dislocation configurations, including loops and low-angle grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号