首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Qi  Xiaofei  Yan  Ning  Li  Hongyan  Zhao  Yu  Liu  Peijin  Yan  Qilong 《Cellulose (London, England)》2022,29(3):1307-1314

We performed dynamic mechanical analysis (DMA) on nitrocellulose (NC) plasticized by an insensitive plasticizer N-butyl-N-(2-nitroxy-ethyl)nitramine (Bu-NENA). NC/Bu-NENA blend shows two mechanical relaxation processes in the temperature ranges of???50 to???40 °C and 30?~?40 °C, and their variations with deformation frequencies were studied. To explore further the effect of temperature on relaxation, the binary mixture model of NC/Bu-NENA was constructed, and molecular dynamic simulations were conducted. The simulated mean square displacements (MSD) show abrupt increase in the temperature range of???50 to???40 °C and 30?~?40 °C, which are consistent with those of the two relaxation processes observed in the DMA curves. Moreover, the free volume (Vfree) and torsion energy obtained from molecular dynamic simulations exhibit distinct increase at the temperature above 30 °C and???50 °C respectively, reflecting the sudden enhancements on the mobility of polymer chain elements and the rotation of molecular bonds. Furthermore, the radial distribution function (RDF) associated with the intermolecular interactions reveals that the intensities of both hydrogen bond and van der Waals forces decrease with the increase of temperature, which is responsible for the decrease of storage modulus at high temperature. These computational and experimental studies reveal guidance to strengthening the NC base propellants in broad temperature range.

  相似文献   

2.
3.
By combining the offline static and dynamic laser light scattering (LLS) and gel permeation chromatography (GPC) results of a broadly distributed polymer sample, we were able to characterize a series of chiral binaphthyl-based polyarylenes and poly(aryleneethnylene)s in THF at 25°C. For each of the samples, we obtained not only the weight-average molar mass Mw, the second virial coefficient A2 and the z-average translational diffusion coefficient 〈D〉, but also two calibrations: V = A + Blog(M) and D = kD M−αD, where V, D, and M are the elution volume, the translational diffusion coefficient and the molar mass for monodisperse polymer chains, respectively, and A, B, kD, and αD are four calibration constants. Using these calibrations, we estimated the molar mass distributions of these novel polymers. We showed that using polystyrene to calibrate the GPC columns could lead to a smaller Mw. Our results indicate that all the polymers studied have a rigid chain conformation in THF at 25°C and the introduction of the —NO2 groups into the monomer can greatly promote the polymer solubility in THF.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2615–2622, 1998  相似文献   

4.
A comparative photon correlation spectroscopy study is reported of the concentration-dependent translational diffusion coefficient Dt of atactic poly(2-vinyl pyridine) in tetrahydrofuran and in aqueous solution, in the form of the poly(2-vinyl pyridinium)chloride salt (α = 0.4). The limiting Stokes radius of the polymer is observed to be identical within experimental error in tetrahydrofuran (THF) at temperatures below 30°C and in aqueous solutions at high ionic strength. This numerical value is comparable to expectation for an unperturbed atactic vinyl polymer chain and indicates a compact, possibly micellar, conformation. Raising the temperature in THF above 30°C and decreasing the ionic strength or increasing the ionization above α = 0.4 in aqueous solvents causes a discontinuous cooperative transition to a more expanded structure. The effect of the conformational change is also manifest in the concentration dependence of Dt. Using experimental estimates of the second osmotic virial coefficients obtained by total scattered intensity measurements, the experimental data for dDt/dc are compared with prediction based on hydrodynamic theory. Substantial disagreement is found between theory and experiment, especially in the aqueous system. In 0.01M NaCl, decrease in polyion concentration induces the transition from the compact form to a highly extended structure. Angle-dependent quasielastic light scattering data from the expanded state provides information about the intramolecular chain dynamics.  相似文献   

5.
Two‐dimensional time‐domain 1H NMR was used to investigate annealed isotactic polypropylene in the solid phase. The spin–lattice relaxation in the laboratory frame and in the rotating frame were correlated with the shape of the free induction decay to identify and characterize relaxation components over the temperature range −120 to 120 °C. Several phase transitions were observed, and three distinct solid phases, with different chain mobilities, were detected. Two of these phases were identified as regions with different mobilities within the crystalline phase. The third phase was characterized by a high degree of isotropy in molecular motion. This phase, identified as the amorphous phase, appeared as the polymer was heated above a low‐temperature (−45 °C) phase transition. All transitions observed at higher temperatures occurred exclusively in this phase. About one‐third of the polymer chains reside between crystalline lamellae, whereas the majority form amorphous regions outside fibrils of multilamellar structure. Furthermore, the glass‐to‐rubber transition, occurring above −15 °C, consists of three stages. During the first stage, between −15 °C and 15 °C, regions with an increased segment mobility (labeled intermediate phase) appear gradually within the amorphous phase. At 15 °C, the intermediate phase consists of ∼10% of the polymer units, or one‐third of the polymer units constituting the amorphous phase. Between 15 °C and 25 °C, the intermediate phase increases rapidly to 18%. This is associated with the appearance of semiliquid and liquid regions, likely within the intermediate phase. Polymer chain segments (and possibly entire chains) involved in the liquidlike phases exhibit heterogeneous molecular motion with a correlation frequency higher than 106 Hz. These two stages of glass‐to‐rubber transition occur within amorphous regions outside multilamellar structures. The third stage of the glass transition, appearing above 70 °C, is associated with the upper glass transition and occurs within the interlamellar amorphous phase. Finally, on a timescale of 100 ms or less, spin diffusion does not couple the amorphous regions outside fibrils with crystalline and amorphous regions within multilamellar fibrils. However, on a timescale of hundreds of milliseconds to seconds, all different regions within isotactic polypropylene are partially coupled. It is proposed that the relative magnitude of the crystalline magnetization, as observed in the T experiment, is a good measure of polymer crystallinity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2487–2506, 2000  相似文献   

6.
Poly(2‐alkyl‐2‐oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (Tg) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt‐recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 °C and PiPropOx between 90 and 150 °C show that PAOx can crystallize in bulk when enough time is given. The decrease of Tg and the corresponding increase in chain mobility at T > Tg with increasing alkyl side chain length can be attributed to an increasing distance between the polymer backbones and thus decreasing average strength of amide dipole interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 721–729  相似文献   

7.
The uptake of water by nylon 6,6 [42DB Adipure (trade name of Dupont Canada Inc.)] at 100°C has been monitored by a combination of one-dimensional proton NMR spectroscopy, relaxation time (T1 and T2) measurements and proton microscopic NMR imaging techniques. The relaxation times of the water absorbed into the nylon matrix are very short at room temperature, (T2 < 1 ms and T1 ≈ 1 s) indicating that the water is located in a highly restricted environment and suggesting that strong interactions exist between the absorbed water and the polymer. The diffusion profiles measured at room temperature indicate that the diffusion of water into nylon 6,6 at 100°C is Case I Fickian diffusion. The spatial dependence of the T2 relaxation time constant and its variation with the water content was also examined. The results reveal that both T2 and T2* decrease toward the center of the sample in samples that have a concentration gradient of sorbed water. In fully saturated samples, no spatial dependence was observed. The overall values of T2 and T2* are also observed to increase as a function of exposure time. An evaluation of the desorption process at room temperature and at 100°C was performed. A continuous, exponentially decreasing solvent profile was observed for the desorption process which again indicates Case I Fickian kinetics. The exchange process of external bulk and atmospheric water with deuterium oxide (D2O) saturated nylon rods has also been studied using the microscopic imaging technique. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
A chiral monomer containing L ‐leucine as a pendant group was synthesized from methacryloyl chloride and L ‐leucine in presence of sodium hydroxide at 4 °C. The monomer was polymerized by free radical polymerization in propan‐2‐ol at 60 °C using 2,2′‐azobis isobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The polymer, poly(2‐(Methacryloyloxyamino)‐4‐methyl pentanoic acid) is thus obtained. The molecular weight of the polymer was determined to be: Mw is 6.9 × 103 and Mn is 5.6 × 103. The optical rotation of both chiral monomer and its polymer varies with the solvent polarity. The amplification of optical rotation due to transformation of monomer to polymer is associated with the ordered conformation of chiral monomer unit in the polymeric chain due to some secondary interactions like H‐bonding. The synthesized monomer and polymer exhibit intense Cotton effect at 220 nm. The conformation of the chain segments is sensitive to external stimuli, particularly the pH of the medium. In alkaline medium, the ordered chain conformation is destroyed resulting disordered random coils. The ordered coiling conformation is more firmly present on addition of HCl. The polymer exhibits swelling‐deswelling characteristics with the change of pH of the medium, which is reversible. The Cotton effect decreases linearly with the increase of temperature which is reversible on cooling. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2228–2242, 2009  相似文献   

9.
When the structure of a primary radical resembles that of the chain end of the polymer radical, the rate of the primary radical termination is approximately the same as the termination rate between the oligomer radical and the polymer radical. The rate constant of termination between polymer radicals of chain length n and s, which involve the primary radicals, is kt,ns = const.(ns)?a. In the polymerization of methacrylonitrile initiated by 2,2′-azobisisobutyronitrile in dimethylformamide at 60.0°C, the value of a is found to be 0.091. From data obtained previously in the bulk polymerization of styrene initiated by 1-azobis-2-phenylethane at 60.0°C, the value of a is found to be 0.167. Because such a values are so large that they are not estimated by the excluded volume, the termination rates are discussed by adding the dependence of the diffusion of the segments to that for chain length.  相似文献   

10.
A new approach for the simulation of PLP (pulsed laser polymerization) is presented. This approach allows one to obtain new analytical solutions for different polymerization schemes, including either chain transfer to the monomer or intramolecular chain transfer to the polymer. The first results of the simulation of PLP experiments on n‐butyl acrylate at 20 °C and ambient pressure are presented.

MWDs simulated for PLP of n‐butyl acrylate, in bulk at 20 °C and ambient pressure using three models: the model with intramolecular chain transfer to the polymer (solid line), the model with chain transfer to monomer (dashed line), and the classical model (dotted line).  相似文献   


11.
The dynamics of the concentration fluctuations in end-grafted polystyrene brushes in a theta solvent (cyclohexane) are probed by evanescent wave dynamic light scattering at different wavevectors q and temperatures. When the solvent quality changes from marginal to poor, the relaxation function C(q, t) exhibits strong effects as compared with the smooth variation of the brush density profile. From a single exponential above 50 °C, C(q, t) becomes a two-step decay function. The fast decay is still assigned to the cooperative diffusion albeit slower than in the good solvent regime whereas the slow nonexponential and nondiffusive process might relate to microsegragated and/or chain dynamics in the present polydisperse brush. The relaxation function of the present three brushes with different grafting density reveals similarities and disparities between wet brushes and semidilute polymer solutions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3590–3597, 2006  相似文献   

12.
Transitions and relaxation phenomena in poly(1,4-phenylene ether) were studied over temperature range from 100 to 800°K by applying a combination of calorimetric, dilatometric, dynamic mechanical, and dielectric techniques. Amorphous polymer, exhibiting no x-ray crystallinity, is obtained only by quenching molten samples at extremely fast cooling rates (ca. 1000°C/sec) and by minimizing thermal gradients within specimens. A weakly active mechanical relaxation region with a loss maximum at 155°K of unknown origin was observed. The glass transition interval of completely amorphous polymer is characterized by a discontinuous jump in heat capacity of 2.76 cal/deg per chain segment occurring at 363°K (corrected for kinetic effects), and a fourfold increase in the coefficient of linear thermal expansion. Strongly active, dynamic mechanical relaxations occur in the Tg interval with a loss maximum at 371°K (f = 110 cps) and resulting in a drop in the dynamic storage modulus from 1011 to 109 dyne/cm2. Cold crystallization takes place just above Tg, to yield a polymer with an x-ray crystallinity of 0.7 and a heat of crystallization of 270 cal/mole. The crystalline polymer shows a complex melt structure. Depending upon the thermal history, multiple endothermic peaks indicative of structural reorganizations occur just prior to fusion. Very high dielectric losses with a wide distribution of relaxation times were observed in the melt interval. The mechanical relaxation spectrum in this region is typical of viscous flow behavior.  相似文献   

13.
The electron spin resonance spectrum of gamma-irradiated octadecyl methacrylate (m.p. ≈ 12°C.) was due to a mixture of three radicals formed by (1) loss of a hydrogen atom from the paraffin chain, (2) addition of a hydrogen atom to the double bond, and (3) addition of a monomer molecule to radicals formed by (1) or (2). On warming monomer added to radicals (1) and (2) between ?170 and ?50°C., and above ?50°C. the spectrum was solely due to propagating methacrylate radicals. The total radical concentration decreased slightly at ?150°C. and was then constant up to ?30°C. A marked decrease in radical concentration occurred from ?30 to +12°C., it took place rapidly and reached an equilibrium value after each successive increase in temperature. Differential thermal analysis indicated a solid—solid phase change at ?30°C. When the sample was kept at 0°C. there was no further decrease in radical concentration even with 50% conversion to polymer. With 2% added chloranil the (chloranil)? was observed to be of about the same concentration as methacrylate radicals. The initial total radical concentration was lower and decreased to zero by 0°C. on warming. No polymer was obtained.  相似文献   

14.
Recent developments of using laser light scattering (LLS) to characterize the molecular weight distribution f(M) of special polymers such as Kevlar, Tefzel, Teflon, branched epoxy clusters, gelatin, dextran, segment copolymers and polymer mixtures, are reviewed. The basic principle of combining static (classic) and dynamic LLS results is outlined. In dynamic LLS, the line-width (or the translational diffusion coefficient) distribution G(Γ) can be obtained from the precisely measured intensity–intensity time correlation function. The key problem is transforming G(Γ) to a corresponding molecular weight distribution f(M) is to establish a calibration between D (the translational diffusion coefficient) and M. Typical examples were used to illustrate different calibration methods, including the methods of using a series of narrowly distributed polymer standards with different molecular weights, using two or more broadly distributed polymer samples, and one broadly distributed polymer samples plus an additional experimental method (e.g. viscometry or size exclusion chromatography). The advantages and disadvantages of the LLS method are discussed by comparison with size exclusion chromatography. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Two unfractionated samples of phenolphthalein poly(aryl ether sulfone) (PES-C) were characterized in CHCl3 at 25°C by applying a recently developed laser light-scattering (LLS) procedure. The Laplace inversion of precisely measured intensity–intensity time correlation function lead us first to an estimate of the characteristic line-width distribution G(Λ) and then to the translational diffusion coefficient distribution G(D). A combination of static and dynamic LLS results enabled us to determine D = (2.69 × 10−4)M−0.553, which agrees with the calibration of D = (2.45 × 10−4)M−0.55 previously established by a set of narrowly distributed PES-C samples. Using this newly obtained scaling between D and M, we were able to convert G(D) into a differential weight distribution fw(M) for the two PES-C samples. The weight-average molecular weights calculated from fw(M) are comparable to that obtained directly from static LLS. Our results showed that using two broadly distributed samples instead of a set of narrowly distributed samples have provided not only similar final results, but also a more practical method for the PES-C characterization. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
A new NLO‐active polyurethane (Tg = 145°C) based on a two‐dimensional NLO chromophore has been investigated. Two ends of this lambda‐shaped chromophore can be directly bound to the main chain of polyurethane. After poling, fast relaxation of the effective second harmonic (SH) coefficient was observed at temperatures higher than 122°C. Moreover, excellent temporal stability at 100°C was obtained despite the operating temperature being very close to the fast relaxation temperature. This is due to the fact that embedding the rigid lambda‐shaped chromophores into the polymer backbone effectively restricts molecular motion at temperatures close to Tg.  相似文献   

17.
Melittin dissolved in 42% trifluoroethanol‐water at pH 2 has been shown to be α‐helical between residues 6 and 12 and between residues 13 and 25, with the two helical regions separated by a bend at the Leu13 residue. The inter‐helix angle was found to be 154 ± 3° at 0 °C and 135 ± 3° at 25 °C. The dominant conformation of the peptide is thus similar to those observed by previous workers for the peptide in a variety of media. At 25 °C, intermolecular nuclear Overhauser effects arising from nuclear spin dipole‐dipole interactions between melittin hydrogens and fluorines of the solvent are essentially those expected for a system that is homogeneous as regards concentration and translational diffusion of the peptide and fluoroalcohol components. However, at 0 °C, peptide‐trifluoroethanol cross‐relaxation terms are negative, a result consistent with the conclusion that fluoroalcohol molecules associate with the peptide for times (~1 ns) that are long compared to the time of a typical peptide‐fluoroalcohol diffusive encounter (~0.2 ns). Such interactions may be responsible for the reduction of the translational diffusion coefficient of trifluoroethanol produced by dissolved peptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The dielectric relaxation of poly(bis-benzimidazobenzisoquinolinones) has been studied in the frequency range from 101 to 105 Hz and at temperatures from ?150 to +80°C. The data show that the relaxation is due mainly to diffusion of water in the polymer with simultaneous reorientation of water dipoles.  相似文献   

19.
Slow relaxing longitudinal density fluctuations in bulk syndiotactic poly (n-butyl methacrylate) [PBMA] were studied by photon correlation spectroscopy as a function of temperature from 70 to 90°C. The shape of the light-scattering relaxation function broadened as the temperature approached the glass transition (Tg = 55°C). The average relaxation time shifted with temperature, consistent with previous studies of PBMA. The relaxation functions were analyzed in terms of a distribution of relaxation rates. The calculated distribution was clearly bimodal and the shape altered with temperature. The higher frequency peak in the distribution corresponds well with previous mechanical and dielectric relaxation studies of the intramolecular relaxation of the acrylate ester side chain. The resolution of the distribution into two modes is due to a well-defined side-chain motion with relaxation strength comparable to the primary glass-rubber relaxation. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Poly(N-n-butylitaconimide) was prepared by radical polymerization in benzene and in bulk at 60°C and was subsequently fractionated at 30°C with benzene and methanol as solvent and nonsolvent, respectively. Relationships between molecular weight and intrinsic viscosity (Mark-Houwink-Sakurada equations) in tetrahydrofuran, benzene, and toluene at 30°C are established. From the Burchard-Stockmayer-Fixman plot, the characteristic ratio of this polymer is determined, and local chain conformation is discussed in relation to the termination process in radical polymerization. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号