首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Salt cluster ions of alkali metal chlorides ACl (A = Li(+), Na(+), K(+), Rb(+) and Cs(+)) and sodium salts NaB (B = I(-), HCOO(-), CH(3)COO(-), NO(2)(-), and NO(3)(-)), formed by electrospray ionization, were studied systematically by mass spectrometry. The influences on the total positive ion and negative ion currents of variation of solvent, solution concentration, desolvation temperature, solution flow-rate, capillary voltage and cone voltage were investigated. Only cone voltage was found to influence dramatically the distribution of salt cluster ions in the mass spectra observed. Under conditions of normal cone voltage of approximately 70 V, cluster ions having magic numbers of molecules are detected with high relative signal intensity. Under conditions of low cone voltage of approximately 10 V, the distribution of cluster ions detected is characterized by a relatively low average mass/charge ratio due to the presence of multiply charged cluster ions; in addition, there is a marked reduction in cluster ions having a magic number of molecules. Product ion mass spectra obtained by tandem mass spectrometry of cluster ions are characterized by a base peak having a magic number of molecules that is less than and closest to the number of molecules in the precursor ion. Structures have been proposed for some dications and some quadruply charged ions. At pH 3 and 11, the mass spectra of NaCl clusters show the presence of mixed clusters of NaCl with HCl and NaOH, respectively. The effects of ionic radius on 20 distributions of cluster ions for 10 salts were investigated; however, the fine structure of these effects is not readily discerned.  相似文献   

2.
The use of orthogonal acceleration quadrupole time-of-flight (Q-TOF) mass spectrometry to determine the collisionally activated dissociation (CAD) of a test compound 1-(3-[5-[1,2,4-triazol-4-yl]-1H-indol-3-yl]propyl)-4-(2-[3-fluorophenyl]ethyl)piperazine is described. At unit-mass resolution the identity of many ions is ambiguous because of the complexity of the resulting product ion spectrum. Using the high resolution capabilities of the Q-TOF instrument, exact masses for each fragment were determined. These data were used to infer molecular formulas for each fragment through software interpretation and, by further applying chemical intuition, the majority of ions were fully assigned. Additionally, by utilizing in-source fragmentation at high cone voltage, analyses of second-generation products allowed derivation of a consistent sequential fragmentation pathway. This study clearly demonstrates the power of Q-TOF mass spectrometry to elucidate complex product ion spectra.  相似文献   

3.
A novel 6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c]quinazoline (HL) serves as a first-time highly selective and sensitive ratiometric fluorescent chemosensor probe for oxorhenium (ReO(V)) ion in acetonitrile : water = 9 : 1 (v/v) at 25 °C. The decrease in fluorescence at 410 nm and increase in fluorescence at 478 nm with an isoemissive point at 444 nm in the presence of ReO(V) ion is accounted for by the formation of mononuclear [ReOL(2)Cl] complex, characterized by physico-chemical and spectroscopic tools. The fluorescence quantum yield of the chemosensor (HL) was only 0.198 at 410 nm, and it increased more than 3-fold in the presence of 2 equiv. of the ReO(V) ion at 478 nm. Interestingly, the introduction of other metal ions and relevant anions caused the fluorescence intensity at 478 nm to be either unchanged or weakened. The fluorescence-response fits a Hill coefficient of 2.088 indicates the formation of a 1 : 2 stoichiometry for the L-ReO(V) complex. In the concentration range of 0-20 μM of oxorhenium(V) species calibration graph was linear with correlation coefficient (R) of 0.99994 and the calibration sensitivity was found to be 4.0 × 10(-7) M. The cellular image in the confocal microscope clearly indicated the presence of ReO(V) in Candida albicans cells using this chemosensor (HL).  相似文献   

4.
The reaction of rhenium (VII) trioxo complexes containing the ligand sets scorpionate, [HB(pz)3]ReO3 (6), [Ph-B(pz)3]ReO3 (7), and [[HC(pz)3]ReO3][ReO4] (8) and pyridine/pyridine-type ligands [(4,7-diphenyl-1,10-phen)(Br)ReO3] (12), [(4,4'-di-tert-butyl-2,2'-dipyridyl)(Cl)ReO3] (13), and [(py)2Re(Cl)O3] (4), with diphenyl ketene, has led to the isolation of six novel [3 + 2] cycloaddition products. These air-stable solids 9-11 and 15-17 are the result of [3 + 2] addition of the O=Re=O motif across the ketene C=C double bond. Five of the six [3 + 2] cycloaddition products have been structurally characterized by single-crystal X-ray diffraction and in all cases by 13C NMR and IR spectroscopies.  相似文献   

5.
The first structural characterization of an actinide complex with coordinated perrhenate is reported, [UO2(ReO4)2(TPPO)3] (1). In this [UO2]2+ complex two [ReO4]- anions and three TPPO (triphenylphosphine oxide) P=O donor ligands are coordinated in the equatorial plane in a cisoid arrangement. This bonding arrangement, and apparent strain observed in the equatorially bonded ligands, is attributed to the solid state packing in adjacent molecules in which hydrophobic TPPO ligands form an effective "shell" around a hydrophilic core of two UO2(ReO4)2 moieties. Solid state vibrational spectroscopy (infrared and Raman), 31P CP MAS NMR and elemental analysis are also consistent with the formula of 1. Solution state vibrational spectroscopy and 31P NMR measurements in EtOH indicate the lability of the TPPO and [ReO4]- groups. The photolytic generation of peroxide in EtOH solutions of 1 leads to the formation of trace quantities of [[(UO2)(TPPO)3]2(mu2-O2)][ReO4]2, 2, in which the coordinated [ReO4]- groups of 1 have been displaced by bridging O2(2-), derived from atmospheric O2. Finally, attempts to synthesise a [NpO2]+ analogue of have resulted only in the formation of [NpO2(TPPO)4][ReO4], 3, in which [ReO4]- acts solely as a counter anion. From these results it can be concluded that [ReO4]- will bond to [UO2]2+, but will be readily displaced by a more strongly coordinating ligand (e.g. peroxide) and will not coordinate to an actinyl cation with a lower charge, [NpO2]+, under the same reaction conditions.  相似文献   

6.
Flavonol 3,7-di-O-glycosides were investigated by negative ion electrospray ionization tandem mass spectrometry using a quadrupole linear ion trap (LIT) mass spectrometer. The results indicate that the fragmentation behavior of flavonol 3,7-di-O-glycosides is substantially different from that of their isomeric mono-O-diglycosides. In order to characterize a flavonoid as a flavonol 3,7-di-O-glycoside, both [Y3(0) - H]-* and [Y(0) - 2H]- ions should be present in [M - H]- product ion spectrum. The MS(3) product ion spectra of Y3(0)-, [Y3(0) - H]-* and Y7(0)- ions generated from the [M - H]- ion provide sufficient structural information for the determination of glycosylation position. Furthermore, the glycosylation positions are determined by comparing the relative abundances of Y3(0)- and Y7(0)- ions and their specific fragmentation patterns with those of flavonol mono-O-glycosides. In addition, a [Y3(0) - H]-* ion formed by the homolytic cleavage of 3-O glycosidic bond with high abundance points to 3-O glycosylation, while a [Y(0) - 2H]- ion formed by the elimination of the two sugar residues is consistent with glycosylation at both the 3-O and 7-O positions. Investigation of negative ion ESI-MS(2) and MS(3) spectra of flavonol O-glycosides allows their rapid characterization as flavonol 3,7-di-O-glycoside and their differentiation from isomeric mono-O-diglycosides, and also enables their direct analysis in crude plant extracts.  相似文献   

7.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

8.
Xu L  Lowe MP  Rettig SJ  Orvig C 《Inorganic chemistry》2001,40(18):4623-4626
[ReO(ppme)X] (where ppme(2-) is 2,5-diazo-N,N'-dimethylhexyl-1,6-bis(phenylphosphinate), X = Br0.3Cl0.7) has been synthesized via a substitution reaction and structurally characterized. The coordination geometry is a distorted octahedron and one phosphinate coordinates cis and the other trans to the oxo O atom. This coordination mode is conserved in all [ReOppmeX] complexes synthesized in this study. [ReO(ppme)Cl] has been prepared by a reduction/complexation reaction from [NH4][ReO4]. [ReO(ppme)Cl] reacts with thiocyanate and benzene thiolate forming [ReO(ppme)X] (X = (-)NCS, (-)SC6H5), but the one-pot synthesis of the respective ternary thiolate complexes from perrhenate was not successful. The reduction/complexation reaction of a thiol, H2ppmeCl4, and perrhenate resulted in the formation of [H3ppme][ReO(SR)4], the reaction of which with [ReO(ppme)Cl] does not lead to [ReO(ppme)SR] in high yields.  相似文献   

9.
The complexations of cadmium ion with guanine bases were detected by electrospray ionization mass spectrometry (ESI-MS). In order to explore the toxicity of cadmium, such as oxidative stress to DNA and carcinogenesis, it is very important to determine the interactions between the cadmium ion and nucleotide. The analysis of mixed cadmium ion-guanosine aqueous solution (molar ratio 1 : 9) using ESI-MS (cone voltage 20 V) showed the presence of various cadmium complex ions, such as [n (guanosine) + Cd](2+) (n = 3-8), [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + 2guanine + Cd](2+). The observed [2guanine + Cd](2+), [guanosine + guanine + Cd](2+) and [guanosine + guanine + Cd](2+) ions are formed through the dissociation of the N-glycoside bond at the interface of ESI-MS. For deoxyguanosine and ethylguanine, similar cadmium complexes were observed. However, the complexes between the cadmium ion and 8-hydroxydeoxyguanosine were not detected. Furthermore, when a higher molar ratio (Cd : guanosine) or cone voltage were used, more of the monovalent ion peaks, such as [Cd(guanine - H)(2) + H](+) and [Cd(guanosine - H)(2) + H](+), were observed and a decrease in the abundance of the divalent ions, such as [n(guanosine)+Cd](2+), occurred.  相似文献   

10.
This paper compares two liquid introduction atmospheric pressure ionization techniques for the analysis of alkyl ethoxysulfate (AES) anionic surfactant mixtures by mass spectrometry, i. e., electrospray ionization (ESI) in both positive and negative ion modes and atmospheric pressure chemical ionization (APCI) in positive ion mode, using a triple quadrupole mass spectrometer. Two ions are observed in ESI(+) for each individual AES component, [M + Na]+ and a “desulfated” ion [M − SO3 + H]+, whereas only one ion, [M − Na] is observed for each AES component in ESI(−). APCI(+) produces a protonated, “desulfated” ion of the form [M − NaSO3 + 2H]+ for each AES species in the mixture under low cone voltage (10 V) conditions. The mass spectral ion intensities of the individual AES components in either the series from ESI(+) or APCI(+) can be used to obtain an estimate of their relative concentrations in the mixture and of the average ethoxylate (EO) number of the sample. The precursor ions produced by either ESI(+) or ESI(−), when subjected to low-energy (50 eV) collision-induced dissociation, do not fragment to give ions that provide much structural information. The protonated, desulfated ions produced by APCI(+) form fragment ions which reveal structural information about the precursor ions, including alkyl chain length and EO number, under similar conditions. APCI(+) is less susceptible to matrix effects for quantitative work than ESI(+). Thus APCI(+) provides an additional tool for the analysis of anionic surfactants such as AES, especially in complex mixtures where tandem mass spectrometry is required for the identification of the individual components.  相似文献   

11.
The effect of solvent and counter ion on the complexes of 2,5-bis(2-pyridyl)-1,3,4-oxadiazole (1) with Fe+2 and Fe+3 has been studied by electrospray ionization mass spectrometry (ESI/MS). As expected, upon ESI conditions the metal reduction proceeds, but it can be deduced that complexes with Fe+2 are favored over those with Fe+3. When methanol is used as solvent, the formation of complexes of stoichiometry 2:1 and 1:1 with counter ion attached (monovalent anion) is favored, for example, [1(2)+FeCl]+ ion. The use of methanol/water (1/1) as solvent favors the formation of complexes of stoichiometry 2:1 and 3:1, namely doubly charged [1(2)+Fe]+2 and [1(3)+Fe]+2 ions. The complexes containing anion of oxidative properties (ClO4-, NO3-), when the higher cone voltage is applied, yield unusual species [1n+FeOm]+ (n=1, 2; m=1, 2). The use of divalent counter ion (SO4(-2)) resulted in formation of complexes containing two iron cations, namely [1n+Fe2SO4]+2 (n=2, 3, 4) ions. These ions can be regarded as Fe-1 complexes bridged by a sulfate anion.  相似文献   

12.
A series of oxorhenium(V) complexes with 2-aminoethanethiolate (aet), [ReO(aet-N,S)(D-pen-N,O,S)] (2), [[ReO(aet-N,S)(2)](2)O] (3), [ReO(Cl)(aet-N,S)(2)] (4), and [ReO(aet-N,S)(Haet-S)(2)]Cl(2) ([5]Cl(2)) was newly prepared starting from ReO(4)(-). The reaction of NH(4)ReO(4) with a 1:1 mixture of Haet.HCl and D-H(2)pen (D-penicillamine) in the presence of SnCl(2).2H(2)O in water gave 2, 3, and the known complex [ReO(D-Hpen-N,S)(D-pen-N,O,S)] (1). These complexes were fractionally precipitated by controlling the pH of the reaction solution. The complex 2 was also prepared in a higher yield by a similar reaction using methanol as a solvent. The crystal structure of 2 was determined by X-ray crystallography; 2 crystallizes in the tetragonal space group P4(3) with a = 9.621(1), c = 12.911(1) A, V = 1195.0(3) A(3), and Z = 4. The oxorhenium(V) core in 2 is coordinated by a bidentate-N,S aet ligand and a tridentate-N,O,S D-pen ligand, having a distorted octahedral geometry with a cis-N cis-S configuration in the equatorial plane perpendicular to the O-Re-O axis. The 1:2 reaction of NH(4)ReO(4) with Haet.HCl in the presence of SnCl(2).2H(2)O in methanol produced 4, which is interconvertible with 3, while the corresponding 1:3 reaction resulted in the isolation of [5]Cl(2). The complexes 4 and 5 were also structurally characterized; 4 crystallizes in the monoclinic space group P2(1)/c with a = 6.839(1), b = 10.0704(6), c = 14.1075(8) A, beta = 91.729(8) degrees, V = 971.2(2) A(3), and Z = 4, while [5]Cl(2) crystallizes in the triclinic space group P1 with a = 11.938(3), b = 12.366(3), c = 5.819(1) A, alpha = 102.71(2), beta = 101.28(2), gamma = 75.41(2) degrees, V = 802.0(3) A(3), and Z = 2. In 4, the oxorhenium(V) core is octahedrally coordinated by two bidentate-N,S aet ligands, which form a cis-N cis-S configurational equatorial plane with a Cl(-) ion trans to the oxo ligand. On the other hand, the oxorhenium(V) core in [5](2+) is coordinated by one bidenate-N,S aet and two monodentate-S Haet ligands, having a distorted trigonal-bipyramidal geometry with S and N donors at the apical positions.  相似文献   

13.
A phospholipid mixture extracted from cultured cells was directly analyzed by capillary (Cap) liquid chromatography (LC)/electrospray ionization (ESI) mass spectrometry (MS). Using a quadrupole mass spectrometer, we analyzed positive molecular ions, negative molecular ions, positive fragment ions and negative fragment ions under four different functions. In the analysis of the elution patterns of the phospholipids, a two-dimensional map, in which the first dimension is elution time and the second dimension is mass, proved useful. Consequently, four different maps can be obtained by each of four different functions. Among them, from negative fragment ions at high cone voltage in the negative ion mode, ions that originated from acyl fatty acid and phosphorylcholine, phosphorylethanolamine and cyclic inositol phosphate can be detected at specific elution times. The map from positive fragment ions at high cone voltage in the positive ion mode indicated ions such as diradylglycerol and derivatives of 1-alkyl or 1-alkenyl cyclic phosphatidic acid from phosphatidylethanolamine (PE), and phosphorylcholine from choline-containing phospholipids. The map produced from positive molecular ions indicated choline-containing phospholipids such as phosphatidylcholine, sphingomyelin, lysophosphatidylcholine and PE. The map of negative molecular ions effectively indicated acidic phospholipids such as phosphatidylinositol. We were able to obtain more than 500 molecular species of phospholipids by this method within a few hours immediately after extraction from culture cells using a mixture of chloroform and methanol (2:1). In this context, we concluded that the combination of Cap-LC and ESIMS seems to be very effective in the analysis of phospholipid classes and their molecular species.  相似文献   

14.
The binding studies of calix[4]pyrroles (16) with fluoro, chloro, bromo, iodo and sulphato anions generated from normal-tetrabutylammoniumfluoride, normal-tetrabutylammoniumchloride, normal-tetrabutylammoniumbromide, normal-tetrabutylammoniumiodide, and normal-tetrabutylammoniumsulphate respectively were investigated by electrospray ionization mass spectrometry (ESI-MS) in dichloromethane–acetonitrile in negative ion mode. The efficacy of a particular calix[4]pyrrole to bind with anions was found maximum at low cone voltage of the instrument, at high cone voltage the binding was suppressed due to removal of anion from the cavity of the macrocycles. The binding strength was found inversely proportional to the size of anion for a particular calix[4]pyrrole. The fragmentation pattern of calix[4]pyrrole was observed at higher cone voltage of ESI-MS and was interpreted. The association constants of calix[4]pyrroles and anions obtained from electronic transition studies were in good agreement with that observed from 1H NMR titration studies.  相似文献   

15.
刺五加寡糖的电喷雾多级串联质谱研究   总被引:2,自引:0,他引:2  
采用小柱层析法从刺五加中分离得到刺五加寡糖类系列化合物(刺五加二糖刺五加六糖).实验结果表明,在正离子模式下的ESI-MS谱中,此类化合物呈现出特征的加合离子峰簇[M+Na]+/[M+K]+或[M+H2O+Na]+/[M+H2O+K]+,可以确定其分子量;在负离子模式下的ESI-MS谱中,刺五加寡糖易形成[M-H]-/[M+nH2O-H]-(n<3).还利用电喷雾多级串联质谱(ESI-MSn)对刺五加三糖进行了系统的研究,推断出刺五加三糖的组成与结构.  相似文献   

16.
Raman and infrared analysis of the new compounds: ReO3(ClO4), an ivory-white solid, and (ClO2)xReO3(ClO4)1+x (x < or = 1), an orange-red chloryl salt, showed that bridging bidentate [ClO4] and terminal ReO3 groups are present in both complexes. Vibrational data on [ClO4] in ReO3(ClO4) were compared to those obtained experimentally and by DFT calculation on a bridging bidentate [ClO4] in Sb2Cl6(O)(OH)(ClO4).  相似文献   

17.
This paper reports a study of resonant dissociative electron attachment (DEA) to the phenol, chlorobenzene, p-, m-, and o-chlorophenol molecules. On the basis of spectroscopic and thermochemical approaches the resonant states of the molecular negative ions (NIs) and the structures of some dissociative decay products are assigned. In the electron energy range up to 3 eV, DEA processes are determined by the two 2[pi*]-shape resonances resulting mainly in formation of [M-H]- and/or Cl- ions. At higher electron energies the energy correlation between peaks in the negative ion effective yield curves and bands of UV spectra allowed identification of the core-excited resonances. The peculiarities of Cl- ion formation and the vibrational fine structure on the effective yield curves of the [M-H]- ions are discussed. The mass spectrometric procedures for measurement of relative cross sections for NI formation are described.  相似文献   

18.
A number of Re complexes with N,N'-bis(2-pyridylmethyl)ethylenediamine (H2pmen) have been made from [NH4][ReO4]. [ReOCl2(H2pmen)]Cl, [ReOCl(Hpmen)][ReO4], and [ReO2(H2pmen)][ReO4] are related by hydrolysis/HCl substitution. [ReOCl(Hpmen)][ReO4] was structurally characterized and found to contain a water-stable amido-Re bond. Dehydrogenation of the N-donor ligand from each amine to imine with concomitant two-electron reduction of the Re center occurs readily in these systems. With suitable 3-hydroxy-4-pyrones, ternary complexes such as [ReIIICl(ma)(C14H14N4)][ReO4].CH3OH, 5, were made from [NH4][ReO4], H2pmen.4HCl and pyrones in one-pot syntheses. 5, a seven-coordinate ReIII complex, was structurally characterized.  相似文献   

19.
[M + NO3]- And [M + (NO3)2]2- ions were produced by electrospray from neutral high-mannose ([Man](5-9)[GlcNAc]2, [Glc](1-3)[Man](4-9)[GlcNAc]2) N-linked glycans and their 2-aminobenzamide derivatives sprayed from methanol:water containing ammonium nitrate. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. This behavior could be rationalized by an initial proton abstraction from various hydroxy groups by the initially-formed anionic adduct. These negative ion spectra were more informative than the corresponding positive ion spectra and contained prominent ions that were diagnostic of structural features such as the composition of individual antennas that were not easily obtainable by other means. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for many of the diagnostic ions.  相似文献   

20.
Adhikari BB  Gurung M  Kawakita H  Ohto K 《The Analyst》2011,136(18):3758-3769
A calix[5]arene based solvent extraction reagent 3, appending carboxylic acid groups at the lower rim, has been developed and its complexation behavior towards some transition metal ions has been studied. The host 3 can selectively and quantitatively extract Pb(II) ions above pH 1.8 while other divalent ions such as Cu(II), Zn(II), Co(II), Ni(II) are extracted quantitatively only above pH 3.0. The outstanding Pb(II) selectivity of 3 comes from the size fit complementarity effect of the Pb(II) ion in the calix[5]arene cavity. One molecule of 3 extracts two Pb(II) ions in a stepwise manner. The first Pb(II) ion is extracted into the deep cavity of the calix[5]arene defined by phenoxy oxygen atoms. The first complexed Pb(II) ion acts as a template to bring the host into a cone conformation and induces a positive allosteric effect for the extraction of the second Pb(II) ion at an oxygen rich coordinating site composed of carboxyl groups. Both the Pb(II) ions are extracted through an ion exchange mechanism and the electroneutral complex in the organic phase is formed by the release of an equivalent number of hydrogen ions into aqueous solution. The loaded Pb(II) is easily back-extracted from Pb(II)-complexed 3 using dilute acid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号