首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Thin-layer chromatography, first derivative, ratio spectra derivative spectrophotometry and Vierordt's method have been developed for the simultaneous determination of paracetamol and drotaverine HCl. TLC densitometric method depends on the difference in Rf values using ethyl acetate:methanol:ammonia (100:1:5 v/v/v) as a mobile phase. The spots of the two drugs were scanned at 249 and 308 nm over concentration ranges of 60-1200 microg/ml and 20-400 microg/ml with mean percentage recovery 100.11%+/-1.91 and 100.15%+/-1.87, respectively. The first derivative spectrophotometric method deals with the measurements at zero-crossing points 259 and 325 nm with mean percentage recovery 99.25%+/-1.08 and 99.45%+/-1.14, respectively. The ratio spectra first derivative technique was used at 246 and 305 nm with mean percentage recovery 99.75%+/-1.93 and 99.08%+/-1.22, respectively. Beer's law for first derivative and ratio spectra derivative methods was obeyed in the concentration range 0.8-12.8 and 0.4-6.4 microg/ml of paracetamol and drotaverine HCl, respectively. Vierordt's method was applied to over come the overlapping of paracetamol and drotaverine HCl in zero-order spectra in concentration range 2-26 and 2-40 microg/ml respectively. The suggested methods were successfully applied for the analysis of the two drugs in laboratory prepared mixtures and their pharmaceutical formulation. The validity of the methods was assessed by applying the standard addition technique. The obtained results were statistically agreed with those obtained by the reported method.  相似文献   

2.
Three new, different, simple, sensitive, and accurate methods were developed for quantitative determination of nifuroxazide (I) and drotaverine hydrochloride (II) in a binary mixture. The first method was spectrophotometry, which allowed determination of I in the presence of II using a zero-order spectrum with an analytically useful maximum at 364.5 nm that obeyed Beer's law over a concentration range of 2-10 microg/mL with mean percentage recovery of 100.08 +/- 0.61. Determination of II in presence of I was obtained by second derivative spectrophotometry at 243.6 nm, which obeyed Beer's law over a concentration range of 2-10 microg/mL with mean recovery of 99.82 +/- 1.46%. The second method was spectrodensitometry, with which both drugs were separated on a silica gel plate using chloroform-acetone-methanol-glacial acetic acid (6 + 3 + 0.9 + 0.1) as the mobile phase and ultraviolet (UV) detection at 365 nm over a concentration range of 0.2-1 microg/band for both drugs, with mean recoveries of 99.99 +/- 0.15 and 100.00 +/- 0.34% for I and II, respectively. The third method was reversed-phase liquid chromatography using acetonitrile-water (40 + 60, v/v; adjusted to pH 2.55 with orthophosphoric acid) as the mobile phase and pentoxifylline as the internal standard at a flow rate of 1 mU/min with UV detection at 285 nm at ambient temperature over a concentration range of 2-10 microg/mL for both drugs, with mean recoveries of 100.24 +/- 1.51 and 100.08 +/- 0.78% for I and II, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the above drugs with no interference from other dosage form additives. The validity of the suggested procedures was further assessed by applying the standard addition technique which was found to be satisfactory, and the percentage recoveries obtained were in accordance with those given by the EVA Pharma reference spectrophotometric method.  相似文献   

3.
A new RP-LC method and two new spectrophotometric methods, principal component regression (PCR) and first derivative spectrophotometry, are proposed for simultaneous determination of diflucortolone valerate (DIF) and isoconazole nitrate (ISO) in cream formulations. An isocratic system consisting of an ACE C18 column and a mobile phase composed of methanol-water (95 + 5, v/v) was used for the optimal chromatographic separation. In PCR, the concentration data matrix was prepared by using synthetic mixtures containing these drugs in methanol-water (3 + 1, v/v). The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbances at 29 wavelengths in the range of 242-298 nm for DIF and ISO in the zero-order spectra of their combinations. In first derivative spectrophotometry, dA/dlambda values were measured at 247.8 nm for DIF and at 240.2 nm for ISO in first derivative spectra of the solution of DIF and ISO in methanol-water (3 + 1, v/v). The linear ranges were 4.00-48.0 microg/mL for DIF and 50.0-400 microg/mL for ISO in the LC method, and 2.40-40.0 microg/mL for DIF and 60.0-260 microg/mL for ISO in the PCR and first derivative spectrophotometric methods. These methods were validated by analyzing synthetic mixtures. These three methods were successfully applied to two pharmaceutical cream preparations.  相似文献   

4.
Dinç E  Baydan E  Kanbur M  Onur F 《Talanta》2002,58(3):579-594
Double divisor-ratio spectra derivative (graphical method), classical least-squares and principal component regression (two numerical methods) methods were developed for the spectrophotometric multicomponent analysis of soft drink powders and synthetic mixtures containing three colorants without any chemical separation. The graphical method is based on the use of derivative signals of the ratio spectra using double divisor. In this method, the linear determination ranges were 2-8 mug ml(-1) sunset yellow, 4-18 mug ml(-1) tartrazine and 2-8 mug ml(-1) allura red in 0.1 M HCl. In the numerical methods, a training set was randomly prepared by using 18 samples containing between 0 and 8 mug ml(-1) of sunset yellow, 0-18 mug ml(-1) of tartrazine and 0-8 mug ml(-1) of allura red. The chemometric calibrations were calculated by using the prepared training set and its absorbances at seven points (from 375.0 to 550.0 nm) in the spectral region 325-584 nm. The proposed methods were validated by using synthetic ternary mixtures and applied to the simultaneous determination of three colorants in soft drink powders. The obtained results were statistically compared with each other.  相似文献   

5.
A spectrophotometric procedure for the simultaneous determination of amoxycillin and clavulanic acid in some pharmaceutical preparations has been developed. As the absorption bands of amoxycillin (274 and 227 nm) and clavulanic acid (270 nm) overlap, both Vierordt's method and derivative spectrophotometry have been investigated and evaluated. The first-derivative spectrophotometric method was found to be more accurate, direct and reproducible.  相似文献   

6.
Four new selective, precise, and accurate methods are described for the determination of nizatidine (NIZ) in the presence of its sulfoxide derivative in both the raw material and pharmaceutical preparations. Method A is based on zero-order (0D), first-derivative (1D), and second-derivative (2D) spectrophotometric measurement of NIZ in aqueous solution at the zero-crossing point of its sulfoxide derivative (at 314, 295-334, and 318-348 nm, respectively). Method B is a 1DD spectrophotometric method based on the simultaneous use of the first derivative of the ratio spectra and the measurement of peak amplitude at 297 nm. Method C uses a solvent-induced derivative-difference spectrophotometry with deltaD1 measurement from peak to peak at 315-345 nm. Method D involves quantitative densitometric evaluation of a mixture of the drug and its sulfoxide derivative after separation by high-performance thin-layer chromatography on silica gel plates with chloroform-methanol (9 + 1, v/v) as the mobile phase; Rf values for NIZ and its sulfoxide derivative were 0.4 and 0.2, respectively. The spot was scanned at 254 nm. The first-derivative spectrophotometric method was used to investigate the kinetics of the hydrogen peroxide degradation process at different temperatures. The apparent pseudo-first-order rate constant, half-life, and activation energy were calculated. The results obtained by the proposed methods were analyzed statistically and compared with those obtained by the official method. These methods are suitable as stability-indicating for the determination of NIZ in the presence of its oxidation-induced degradation product (sulfoxide derivative) either in the bulk powder or in pharmaceutical preparations.  相似文献   

7.
Wang N  Ren X  Si Z  Jiang W  Liu C  Liu X 《Talanta》2000,51(3):595-598
Praseodymium forms a Pr(LMFX)(3) complex with lomefloxacin. In this paper, the absorption spectra of the complex has been investigated by applying conventional and derivative spectrophotometric methods. It was found that lomefloxacin could form a stable complex with praseodymium in the pH 6.5-8.5 media. The absorption intensity of the complex is 4.5-fold more than PrCl(3). Using the second derivative spectra, the sensitivity is 7.4 times higher for Pr than in the normal method (zero derivative spectra). The second derivative spectrophotometry for determination of praseodymium in the presence of other rare earths has been developed. The calibration curves were linear in the range of 3.5-65 mug ml(-1) for Pr. The detection limit is 0.85 mug ml(-1). The method is satisfactory for the determination of praseodymium in mixed rare earths.  相似文献   

8.
A new method for the sequential determination of attapulgite and nifuroxazide in pharmaceutical formulations by first- and second-derivative spectrophotometry, respectively, has been developed. In order to obtain the optimal conditions for nifuroxazide stability, studies of solvent, light, and temperature effects were performed. The results show that a previous hydrolysis of 2 h in 1.0 x 10(-1)M NaOH solution is necessary in order to obtain stable compounds for analytical purposes. Subsequently, the first- and second-derivative spectra were evaluated directly in the same samples. The sequential determination of the drugs can be performed using the zero-crossing method; the attapulgite determination was carried out using the first derivative at 278.0 nm and the nifuroxazide determination, using the second derivative at 282.0 nm. The determination ranges were 5.7 x 10(-6)-1.0 x 10(-4) and 3.7 x 10(-8) -1.2 x 10(-4)M for attapulgite and nifuroxazide, respectively. Repeatability (relative standard deviation) values of 1.2 and 3.0% were observed for attapulgite and nifuroxazide, respectively. The ingredients commonly found in commercial pharmaceutical formulations do not interfere. The proposed method was applied to the determination of these drugs in tablets. Further, infrared spectroscopy and cyclic voltammetry studies were carried out in order to obtain knowledge of the decomposition products of nifuroxazide.  相似文献   

9.
Four methods were developed for the determination of intact disopyramide phosphate in the presence of its degradation product. In the first and second methods, third-derivative spectrophotometry and first derivative of the ratio spectra were used. For the third-derivative spectrophotometric method, the peak amplitude was measured at 272 nm, while for the derivative ratio spectrophotometric method, disopyramide phosphate was determined by measuring the peak amplitude at 248 and 273 nm. Both methods were used for the determination of disopyramide phosphate in the concentration range 12.5-87.5 microg/mL, with corresponding mean recovery 100.8 +/- 0.7% for the first method and 99.9 +/- 0.7% and 99.6 +/- 0.7% for the second method at 248 and 273 nm, respectively. In the third method, an ion selective electrode (ISE) was fabricated using phosphotungstic acid as an anionic exchanger, PVC as the polymer matrix, and dibutylsebacate as a plasticizer. The ISE was used for the determination of disopyramide phosphate in pure powder form in the concentration range 10(-2)-10(-5) M. The slope was found to be 58.5 (mV/decade), and the average recovery was 99.9 +/- 1.6%. The fourth method depended on the quantitative densitometric determination of the drug in concentration range of 0.25-2.5 microg/spot using silica gel 60 F245 plates and ethyl acetate-chloroform-ammonium hydroxide (85 + 10 + 5, v/v/v) as the mobile phase, with corresponding mean accuracy of 100.3 +/- 1.1%. The 4 proposed methods were found to be specific for disopyramide phosphate in presence of up to 80% of its degradation product for the spectrophotometric methods, 90% of its degradation for the densitometric method, and 40% for the ISE method. The 4 proposed procedures were successfully applied for the determination of disopyramide phosphate in Norpace capsules. Statistical comparison between the results obtained by these methods and the official method of the drug was done, and no significant differences were found.  相似文献   

10.
ABSTRACT: Three simple and rapid spectrophotometric methods were developed for detection and trace determination of benzophenone (the main impurity) in phenytoin bulk powder and pharmaceutical formulations. The first method, zero-crossing first derivative spectrophotometry, depends on measuring the first derivative trough values at 257.6 nm for benzophenone. The second method, zero-crossing third derivative spectrophotometry, depends on measuring the third derivative peak values at 263.2 nm. The third method, ratio first derivative spectrophotometry, depends on measuring the peak amplitudes of the first derivative of the ratio spectra (the spectra of benzophenone divided by the spectrum of 5.0 μg/mL phenytoin solution) at 272 nm. The calibration graphs were linear over the range of 1-10 μg/mL. The detection limits of the first and the third derivative methods were found to be 0.04 μg/mL and 0.11 μg/mL and the quantitation limits were 0.13 μg/mL and 0.34 μg/mL, respectively, while for the ratio derivative method, the detection limit was 0.06 μg/mL and the quantitation limit was 0.18 μg/mL. The proposed methods were applied successfully to the assay of the studied drug in phenytoin bulk powder and certain pharmaceutical preparations. The results were statistically compared to those obtained using a polarographic method and were found to be in good agreement.  相似文献   

11.
Two methods for determining sulphamethizol in the presence of nitrofurantoine in mixtures by first-derivative spectrophotometry and by the first derivative of the ratio spectra are described. The procedures do not require any separation step. In the first method the measurements are obtained in the zero-crossing wavelengths and the calibration graphs were linear up to 32 mug/ml of sulphamethizole at 251 and 278.5 nm. In the second method, the calibration graphs were linear up to 43 mug/ml by measuring at the maximum (263 nm), at the minimum (244 nm) and peak to peak. The methods were applied for determining sulphamethizole in a pharmaceutical product containing nitrofurantoine.  相似文献   

12.
A simple and sensitive spectrophotometric method is developed for the determination of titanium in aqueous medium. The metal ion forms a reddish brown coloured complex with 2,4-dihydroxybenzaldehyde isonicotinoyl hydrazone (2,4-DHBINH) in the pH range 1-7. The complex shows two absorption maxima, one at 430 nm and the other at 500 nm. The reagent shows appreciable absorbance of 430 nm and negligible absorbance at 500 nm at pH 1.5. Beer's law is obeyed in the range 0.09 to 2.15 mug ml(-1) of titanium(IV). The molar absorptivity and the Sandell's sensitivity of the method are 1.35 x 10(4) 1 mol(-1) cm(-1) and 0.0049 mug cm(-2), respectively. A method for the determination of titanium by first-order derivative spectrophotometry is also proposed. The methods have been employed successfully for the determination of titanium in several alloy and steel samples.  相似文献   

13.
Ozgür MU  Sungur S 《Talanta》1995,42(11):1631-1640
Ascorbic acid (AA) has been determined in kiwi, parsley and grapefruit by third order derivative spectrophotometry without using any separation or background correction techniques and reagents. The method is based on the measurement of the distances between two extremum values (peak-to-peak amplitudes) in the third order derivative spectra of the extracts. A metaphosphoric acid (3% w/v)-acetic acid (8% v/v) mixture was found to be the most suitable extraction solution. In the third order derivative spectrum, the extrema of 259.4 nm and 276.2 nm were used for the quantitative determination of AA in kiwi, and the extrema of 227 nm and 237 nm were used for the quantitative determination of AA in parsley and grapefruit. Calibration curves were constructed for the 2.0-10.0 mug ml(-1) concentration range. Relative standard deviations were calculated from the assay results of 14 samples. They were found to be in the ranges of 0.53-2.45% and 0.50-1.41% for the proposed method and the Association of Official Analytical Chemists (AOAC) method, respectively. The obtained results were statistically compared with those of the official method of AOAC using the F test. There was no significant difference between the precisions at a 95% confidence level.  相似文献   

14.
New selective, precise, and accurate methods are described for the determination of a ternary mixture containing drotaverine hydrochloride (I), caffeine (II), and paracetamol (III). The first method uses the first (D1) and third (D3) derivative spectrophotometry at 331 and 315 nm for the determination of (I) and (III), respectively, without interference from (II). The second method depends on the simultaneous use of the first derivative of the ratio spectra (DD1) with measurement at 312.4 nm for determination of (I) using the spectrum of 40 microg/mL (III) as a divisor or measurement at 286.4 and 304 nm after using the spectrum of 4 microg/mL (I) as a divisor for the determination of (II) and (III), respectively. In the third method, the predictive abilities of the classical least-squares, principal component regression, and partial least-squares were examined for the simultaneous determination of the ternary mixture. The last method depends on thin-layer chromatography-densitometry after separation of the mixture on silica gel plates using ethyl acetate-chloroform-methanol (16 + 3 + 1, v/v/v) as the mobile phase. The spots were scanned at 281, 272, and 248 nm for the determination of (I), (II), and (III), respectively. Regression analysis showed good correlation in the selected ranges with excellent percentage recoveries. The chemical variables affecting the analytical performance of the methodology were studied and optimized. The methods showed no significant interferences from excipients. Intraday and interday assay precision and accuracy values were within regulatory limits. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed methods was further assessed by applying a standard addition technique. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.  相似文献   

15.
16.
Platinum and ruthenium in carbon supported Pt and Pt-Ru catalysts were determined by direct and derivative spectrophotometric methods. Complexes of platinum and ruthenium with SnCl(3)(-) ligands (tin(II) chloride in HCl) were used to determine both metals in solutions obtained after digestion of the samples of the catalysts. Platinum in the Pt/C catalyst can be determined in solutions obtained by digestion of the samples in aqua regia. Derivative spectrophotometry was used to determine both metals in the presence of each other in solutions obtained after digestion of samples of the Pt-Ru/C catalyst in the mixture of HCl+HNO(3) (6:1). The first derivative at 377 nm (;zero-crossing' point of ruthenium) and the second-derivative values at 495 nm (;zero-crossing' point of platinum) were used to estimate the concentration of platinum and ruthenium, respectively.  相似文献   

17.
《Analytical letters》2012,45(14):2521-2534
Abstract

In this study, simultaneous determination of caffeine and meclizine dihydrochloride in their binary mixture was conducted by two spectrophotometric methods. In the first method, derivative spectrophotometry, the quantification of caffeine and meclizine dihydrochloride was performed by reading the dA/dλ values at 286.2 nm and 243.4 nm respectively in the first derivative spectra of their mixture in methanol. The relative standard deviation of the method was 0.54% for caffeine and 0.67% for meclizine dihydrochloride. In the second, selective precipitation + derivative spectrophotometry, determination of meclizine dihydrochloride was carried out by precipitation with potassium ferricyanide at pH 2 selectively, then measuring the absorbance of its solution in methanol at 420.8 nm, and determination of caffeine was succeeded by reading the dA/dλ values at 260.6 nm in the first derivative spectra of the remaining solution after precipitation. Relative standard deviation of the method was found to be 0.56% for caffeine and 1.85% for meclizine dihydrochloride. These two methods were applied successfully to a sugar-coated tablet containing these drugs.  相似文献   

18.
Morelli B 《Talanta》1994,41(5):673-683
Binary mixtures of antibiotics, ceftriaxone sulphate and streptomycin sodium, are assayed by 'ratio-spectra' 2nd derivative and 'zero-crossing' 3rd derivative spectrophotometry. Both procedures did not require any separation step and/or solving of equations. In the first method, calibration plots are linear up to 40mug/ml of ceftriaxone at 225, 241.5, 255.5, 255.5-241.5 and 225-241.5 nm (peak-to-peak), with r ranging from 0.9999 to 1.0000, and up to 30mug/ml of streptomycin at 206 nm, r 0.9998. Detection limits, at P = 0.05 level of significance: ceftriaxone, from 0.24 to 0.47 mug/ml (at the various wavelengths), streptomycin, 0.42 mug/ml. By the second method, lines of regression are linear up to 40 mug/ml of ceftriaxone, at 227.8 and 241.7 nm (r, 0.9999 and 1.0000) and up to 35 mug/ml of streptomycin (r, 0.9999). Detection limits were calculated to be 0.35 and 0.15 mug/ml for ceftriaxone and 0.27 mug/ml for streptomycin. Both methods were successfully applied to laboratory mixtures and to mixtures of commercial injections for these drugs.  相似文献   

19.
《Analytical letters》2012,45(6):1179-1191
Abstract

Two new spectrophotometric methods are used for the determination of acrivastine and pseudoephedrine hydochloride in their mixture without previous chemical separation. In the first, second derivative spectrophotometry, the measurements are made at 288.0 nm for acrivastine and at 270.2 nm for pseudoephedrine hydrochloride in the second derivative spectra of their solution in 0.1M NaOH. In the second, ratio spectra derivative spectrophotometry, the amplitudes are measured at 276.0 nm and 298.5 nm corresponding to two maximums for acrivastine, and at 252.6 nm and 268.3 nm corresponding to a maximum and a minumum, respectively, for pseudoephedrine hydrochloride in first derivative of their ratio spectra plotted by using of their solutions as divisor. The methods were successfully applied for the determination of these drugs in a commercial pharmaceutical formulation capsule.  相似文献   

20.
Derivative spectrophotometry and bivariate calibration algorithm were used for study of run of photooxidation of levomepromazine hydrochloride (LV). The actual concentrations of LV and its main degradation product levomepromazine sulphoxide (LV-SO) were calculated using data provided by applied methods. The direct reading of absorbance values at 302 nm and 334 nm were employed for quantification of LV and LV-SO, respectively, in the case of bivariate method. The derivative spectrophotometric method is based on transformation of zero-order spectra into first derivative. The values of first derivative at 334 nm were used for quantification of LV while at 278 nm for assay of LV-SO. The obtained quantitative data were applied for investigation of kinetics of photodegradation of LV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号