首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Srubabati Goswami 《Pramana》2000,54(1):173-184
In this article I review the constraints on neutrino mass and mixing coming from type-II supernovae. The bounds obtained on these parameters from shock reheating, r-process nucleosynthesis and from SN1987A are discussed. Given the current constraints on neutrino mass and mixing the effect of oscillations of neutrinos from a nearby supernova explosion in future detectors will also be discussed.  相似文献   

2.
We perform a dedicated study of the supernova (SN) neutrino flavor evolution during the accretion phase, using results from recent neutrino radiation hydrodynamics simulations. In contrast to what was expected in the presence of only neutrino-neutrino interactions, we find that the multiangle effects associated with the dense ordinary matter suppress collective oscillations. The matter suppression implies that neutrino oscillations will start outside the neutrino decoupling region and therefore will have a negligible impact on the neutrino heating and the explosion dynamics. Furthermore, the possible detection of the next galactic SN neutrino signal from the accretion phase, based on the usual Mikheyev-Smirnov-Wolfenstein effect in the SN mantle and Earth matter effects, can reveal the neutrino mass hierarchy in the case that the mixing angle θ(13) is not very small.  相似文献   

3.
本文总结了在Ⅱ型超新星爆发过程中可能发生的中微子与物质相互作用,综述了Ⅱ型超新星爆发的各个阶段的中微子过程,介绍了有关的中微子输运理论和几种主要近似方案。  相似文献   

4.
5.
Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.  相似文献   

6.
We explore the dynamics of neutrinos in a vacuum dominated cosmology. First we show that such a geometry will induce a phase change in the eigenstates of a massive neutrino and we calculate the phase change. We also calculate the delay in the neutrino flight times in this geometry. Applying our results to the presently observed background vacuum energy density, we find that for neutrino sources further than 1.5 Gpc away both effects become non-trivial, being of the order of the standard relativistic corrections. Such sources are within the observable Hubble Deep Field. The results which are theoretically interesting are also potentially useful, in the future, as detection techniques improve. For example such effects on neutrinos from distant sources like supernovae could be used, in an independent method alternative to standard candles, to constrain the dark energy density and the deceleration parameter. The discussion is extended to investigate Caianiello's inertial or maximal acceleration (MA) effects of such a vacuum dominated spacetime on neutrino oscillations. Assuming that the MA phenomenon exists, we find that its form as generated by the presently observed vacuum energy density would still have little or no measurable effect on neutrino phase evolution, for neutrinos in the energy range of a few eV.  相似文献   

7.
We consider the non-standard matter effect in flavor conversion of neutrinos crossing the core of the Earth. We show that oscillations of core-crossing neutrinos with E≳0.5 GeV can well be described by first order perturbation theory. We show that due to the non-standard matter effect a varying chemical composition in the Earth can modify the neutrino flavor conversion by 100%. The effects of CP violating phases in non-standard neutral current interactions are emphasized in particular.  相似文献   

8.
In recent years,with the development of simulations about supernova explosion,we have a better understanding about the density profiles and the shock waves in supernovae than before.There might be a reverse shock wave,another sudden change of density except the forward shock wave,or even no shock wave,emerging in the supernova.Instead of using the expression of the crossing probability at the high resonance,PH,we have studied the matter effects on neutrino oscillations in different supernova models.In detail,we have calculated the survival probability of νe(P_s)and the conversion probability of ν_x(P_c) in the Schrodinger equation within a simplified two-flavor framework for a certain case,in which the neutrino transfers through the supernova matter from an initial flavor eigenstate located at the core of the supernova.Our calculations was based on the data of density in three different supernova models obtained from simulations.In our work,we do not steepen the density gradient around the border of the shock wave,which differs to what was done in most of the other simulations.It is found that the mass and the density distribution of the supernova do make a difference on the behavior of P_s and P_c.With the results of P_s and P_c,we can estimate the number of νe(and ν_x) remained in the beam after they go through the matter in the supernova.  相似文献   

9.
Considering a new type of environment influences,we use a two-energy-level(ν1-ν2) quantum system to investigate neutrino oscillations in medium.Besides the matter effects derived by Wolfenstein,there may exist extra terms due to a unitary evolution of the system between pure and mixed states,so the evolution equation is modified obviously.We show that the extra terms may play some role and induce observable effects in solar neutrino problem,especially,in the long baseline neutrino oscillation experiments which are under serious consideration recently,if the parameters fall into a suitable region.  相似文献   

10.
《Physics letters. [Part B]》1986,174(4):373-377
Constraints on mass and lifetime of heavy neutrinos imposed by supernova explosions are investigated. It is found that in the mass range of 10–70 MeV the constraint imposed by supernovae is more stringent than those given by cosmology. Any lifetime in this mass range is almost ruled out by the present constraint imposed by supernovae together with those imposed by high-energy experiments. It is suggested that if heavy neutrinos have mass and lifetime not ruled out by these constraints, the energy released by neutrino decay can induce supernova explosions even if the standard bounce-shock mechanism fails in explosions.  相似文献   

11.
Constituent quark mass model is adopted as a tentative one to study the phase transition between two-flavour quark matter and more stable three-flavour quark matter in the core of supernovae. The result shows that the transition has a significant influence on the increasing of the core temperature, the neutrino abundance and the neutrino energies, which contributes to the enhancement of the successful probability of supernova explosion. However, the equilibrium values of these parameters (except the temperature) from the constituent quark mass model in this work are slightly bigger than those obtained from the other model. And we find that the constituent quark mass model is also applicable to describing the transition in the supernova core.  相似文献   

12.
This essay presents a new asymmetry that arises from the interplay of charge conjugation and Lense-Thirring effect. When applied to Majorana neutrinos, the effect predicts oscillations in gravitational environments with rotating sources. Parameters associated with astrophysical environments indicate that the presented effect is presently unobservable for solar neutrinos. But, it will play an important role in supernovae explosions, and carries relevance for the observed matter-antimatter asymmetry in the universe.  相似文献   

13.
Weak-interaction rates play an important role in the birth of neutron stars in core collapse supernova and their subsequent thermal evolution. In this paper, I highlight the role of strong interactions and phase transitions in calculations of neutrino scattering and emission rates in dense stellar matter.Received: 1 November 2002, Published online: 15 July 2003PACS: 13.15.+g Neutrino interactions - 13.20.-v Leptonic and semileptonic decays of mesons - 26.50.+x Nuclear physics aspects of novae, supernovae, and other explosive environments - 26.60.+c Nuclear matter aspects of neutron starsPresent address: Los Alamos National Laboratory, P.O. Box 1663, MS B283, Los Alamos, NM 87545, USA  相似文献   

14.
The history of the development of the theory of neutrino-flavor and neutrino-spin oscillations in electromagnetic fields and in a medium is briefly surveyed. A new Lorentz-invariant approach to describing neutrino oscillations in a medium is formulated in such a way that it makes it possible to consider the motion of a medium at an arbitrary velocity, including relativistic ones. This approach permits studying neutrinospin oscillations under the effect of an arbitrary external electromagnetic field. In particular, it is predicted that, in the field of an electromagnetic wave, new resonances may exist in neutrino oscillations. In the case of spin oscillations in various electromagnetic fields, the concept of a critical magnetic-field-component strength is introduced above which the oscillations become sizable. In considering neutrino oscillations in moving matter, it is shown within the Lorentz-invariant formalism that the relativistic motion of matter significantly affects the character of neutrino oscillations and can radically change the conditions under which the oscillations are resonantly enhanced. Possible new effects in neutrino oscillations are discussed for the case of neutrino propagation in relativistic fluxes of matter.  相似文献   

15.
We have studied neutrino mixing at extreme high energy considering two flavour framework with matter effects. We analyze the atmospheric neutrino data within the simplest scheme of two neutrino oscillation. We consider as special case of matter density profile, which are relevant for neutrino oscillations. In particular, we compute to constrain a specific from of neutrino mass square difference and mixing in extreme high energy in matter. The dispersion relation for the neutrino mixing in neutrino oscillation in matter are discussed.  相似文献   

16.
We present results of 3-neutrino flavor evolution simulations for the neutronization burst from an O-Ne-Mg core-collapse supernova. We find that nonlinear neutrino self-coupling engineers a single spectral feature of stepwise conversion in the inverted neutrino mass hierarchy case and in the normal mass hierarchy case, a superposition of two such features corresponding to the vacuum neutrino mass-squared differences associated with solar and atmospheric neutrino oscillations. These neutrino spectral features offer a unique potential probe of the conditions in the supernova environment and may allow us to distinguish between O-Ne-Mg and Fe core-collapse supernovae.  相似文献   

17.
The effect of a magnetic field of arbitrary strength on the beta decay and crossing symmetric processes is analyzed. A covariant calculation technique is used to derive the expression for the squares of S-matrix elements of these reactions, which is also valid in reference frames in which the medium moves as a single whole along magnetic field lines. Simple analytic expressions obtained for the neutrino and antineutrino emissivities for a moderately degenerate plasma fully characterize the emissivity and absorbability of the studied medium. It is shown that the approximation used here is valid for core collapse supernovae and accretion disks around black holes; beta processes in these objects are predominantly neutrino reactions. The analytic expressions obtained for the emissivities can serve as a good approximation for describing the interaction of electron neutrinos and antineutrinos with the medium of the objects in question and hold for an arbitrary magnetic field strength. Due to their simplicity, these expressions can be included in the magnetohydrodynamic simulation of supernovae and accretion disks to calculate neutrino and antineutrino transport in them. The rates of beta processes and the energy and momentum emitted in them are calculated for an optically transparent matter. It is shown that the macroscopic momentum transferred in the medium increases linearly with the magnetic field strength and can substantially affect the dynamics of supernovae and accretion disks in the regions of a degenerate matter. It is also shown that the rates of beta processes and the energy emission for a magnetic field strength of B ? 1015 G typical of supernovae and accretion disks are lower than in the absence of field. This suppression is stronger for reactions with neutrinos.  相似文献   

18.
We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that the dominant emission process of gravitational waves in core-collapse supernovae may be the oscillations of the protoneutron star core. The oscillations are predominantly of mode character, are excited hundreds of milliseconds after bounce, and typically last for several hundred milliseconds. Our results suggest that even nonrotating core-collapse supernovae should be visible to current LIGO-class detectors throughout the Galaxy, and depending on progenitor structure, possibly out to megaparsec distances.  相似文献   

19.
We study the matter effects for solar neutrino oscillations in a general scheme, without any constraint on the number of sterile neutrinos and the mixing matrix elements, only assuming a realistic hierarchy of neutrino squared-mass differences in which the smallest squared-mass difference is effective in solar neutrino oscillations. The validity of the analytic results is illustrated with a numerical solution of the evolution equation in the simplest case of four-neutrino mixing with the realistic matter density profile inside the Sun.  相似文献   

20.
Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号