首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We say that two graphs are similar if their adjacency matrices are similar matrices. We show that the square grid G n of order n is similar to the disjoint union of two copies of the quartered Aztec diamond QAD n−1 of order n−1 with the path P n (2) on n vertices having edge weights equal to 2. Our proof is based on an explicit change of basis in the vector space on which the adjacency matrix acts. The arguments verifying that this change of basis works are combinatorial. It follows in particular that the characteristic polynomials of the above graphs satisfy the equality P(G n )=P(P n (2))[P(QAD n−1)]2. On the one hand, this provides a combinatorial explanation for the “squarishness” of the characteristic polynomial of the square grid—i.e., that it is a perfect square, up to a factor of relatively small degree. On the other hand, as formulas for the characteristic polynomials of the path and the square grid are well known, our equality determines the characteristic polynomial of the quartered Aztec diamond. In turn, the latter allows computing the number of spanning trees of quartered Aztec diamonds. We present and analyze three more families of graphs that share the above described “linear squarishness” property of square grids: odd Aztec diamonds, mixed Aztec diamonds, and Aztec pillowcases—graphs obtained from two copies of an Aztec diamond by identifying the corresponding vertices on their convex hulls. We apply the above results to enumerate all the symmetry classes of spanning trees of the even Aztec diamonds, and all the symmetry classes not involving rotations of the spanning trees of odd and mixed Aztec diamonds. We also enumerate all but the base case of the symmetry classes of perfect matchings of odd square grids with the central vertex removed. In addition, we obtain a product formula for the number of spanning trees of Aztec pillowcases. Research supported in part by NSF grant DMS-0500616.  相似文献   

2.
We enumerate lattice paths in the planar integer lattice consisting of positively directed unit vertical and horizontal steps with respect to a specific elliptic weight function. The elliptic generating function of paths from a given starting point to a given end point evaluates to an elliptic generalization of the binomial coefficient. Convolution gives an identity equivalent to Frenkel and Turaev's summation. This appears to be the first combinatorial proof of the latter, and at the same time of some important degenerate cases including Jackson's and Dougall's summation. By considering nonintersecting lattice paths we are led to a multivariate extension of the summation which turns out to be a special case of an identity originally conjectured by Warnaar, later proved by Rosengren. We conclude with discussing some future perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号