首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we report a [NiRu] biomimetic system for O2‐tolerant [NiFe]hydrogenases and demonstrate that electron donation to the [NiRu] center can switch the system between the activation of H2 and O2 through simple ligand effects by using hexamethylbenzene and pentamethylcyclopentadienyl ligands, respectively. Furthermore, we present the synthesis and direct observations of a [NiRu]–peroxo species, which was formed by the oxygenation of a Ni‐SIa model [NiRu] complex, that we propose as a biomimetic analogue of O2‐bound species (OBS) of O2‐tolerant [NiFe]hydrogenases. The [NiRu]–peroxo complex was fully characterized by X‐ray analysis, X‐ray photoelectron spectroscopy (XPS), mass spectrometry, and 1H NMR spectroscopy. The OBS analogue was capable of oxidizing p‐hydroquinone and sodium borohydride to turn back into the Ni‐SIa model complex.  相似文献   

2.
[NiFe] hydrogenase, the enzyme of which catalyzes the reversible oxidation of molecular hydrogen to protons and electrons, contains a unique heterodinuclear thiolate-bridged Ni-Fe complex in which the iron center is coordinated by CO and CN. We have synthesized dithiolate-bridged Ni-Fe complexes bearing CO and CN ligands to model the active center of [NiFe] hydrogenase. The Ni-Fe complexes containing a [(CN)2(CO)2Fe(mu-S2)NiS2] framework are the closest yet structural models of [NiFe] hydrogenase.  相似文献   

3.
Described are new derivatives of the type [HNiFe(SR)(2)(diphosphine)(CO)(3)](+), which feature a Ni(diphosphine) group linked to a Fe(CO)(3) group by two bridging thiolate ligands. Previous work had described [HNiFe(pdt)(dppe)(CO)(3)](+) ([1H](+)) and its activity as a catalyst for the reduction of protons (J. Am. Chem. Soc. 2010, 132, 14877). Work described in this paper focuses on the effects on properties of NiFe model complexes of the diphosphine attached to nickel as well as the dithiolate bridge, 1,3-propanedithiolate (pdt) vs 1,2-ethanedithiolate (edt). A new synthetic route to these Ni-Fe dithiolates is described, involving reaction of Ni(SR)(2)(diphosphine) with FeI(2)(CO)(4) followed by in situ reduction with cobaltocene. Evidence is presented that this route proceeds via a metastable μ-iodo derivative. Attempted isolation of such species led to the crystallization of NiFe(Me(2)pdt)(dppe)I(2), which features tetrahedral Fe(II) and square planar Ni(II) centers (H(2)Me(2)pdt = 2,2-dimethylpropanedithiol). The new tricarbonyls prepared in this work are NiFe(pdt)(dcpe)(CO)(3) (2, dcpe = 1,2-bis(dicyclohexylphosphino)ethane), NiFe(edt)(dppe)(CO)(3) (3), and NiFe(edt)(dcpe)(CO)(3) (4). Attempted preparation of a phenylthiolate-bridged complex via the FeI(2)(CO)(4) + Ni(SPh)(2)(dppe) route gave the tetrametallic species [(CO)(2)Fe(SPh)(2)Ni(CO)](2)(μ-dppe)(2). Crystallographic analysis of the edt-dcpe compund [2H]BF(4) and the edt-dppe compound [3H]BF(4) verified their close resemblance. Each features pseudo-octahedral Fe and square pyramidal Ni centers. Starting from [3H]BF(4) we prepared the PPh(3) derivative [HNiFe(edt)(dppe)(PPh(3))(CO)(2)]BF(4) ([5H]BF(4)), which was obtained as a ~2:1 mixture of unsymmetrical and symmetrical isomers. Acid-base measurements indicate that changing from Ni(dppe) (dppe = Ph(2)PCH(2)CH(2)PPh(2)) to Ni(dcpe) decreases the acidity of the cationic hydride complexes by 2.5 pK(a)(PhCN) units, from ~11 to ~13.5 (previous work showed that substitution at Fe leads to more dramatic effects). The redox potentials are more strongly affected by the change from dppe to dcpe, for example the [2](0/+) couple occurs at E(1/2) = -820 for [2](0/+) vs -574 mV (vs Fc(+/0)) for [1](0/+). Changes in the dithiolate do not affect the acidity or the reduction potentials of the hydrides. The acid-independent rate of reduction of CH(2)ClCO(2)H by [2H](+) is about 50 s(-1) (25 °C), twice that of [1H](+). The edt-dppe complex [2H](+) proved to be the most active catalyst, with an acid-independent rate of 300 s(-1).  相似文献   

4.
As a model of the active site of [NiFe] hydrogenases, a dinuclear nickel-ruthenium complex [Ni(xbsms)Ru(CO)2Cl2] was synthesized and fully characterized. The three-dimensional structure reveals a nickel center in a square-planar dithioether-dithiolate environment connected to a ruthenium moiety via a Ni(mu-SR)2Ru bridge. This complex catalyzes hydrogen evolution by electroreduction of the weakly acidic Et3NH+ ions in N,N-dimethylformamide and is therefore the first functional bioinspired model of [NiFe] hydrogenases.  相似文献   

5.
Iron-iron hydrogenases ([FeFe]H2ases) are exceptional natural catalysts for the reduction of protons to dihydrogen. Future biotechnological applications based on these enzymes require a precise understanding of their structures and properties. Although the [FeFe]H2ases have been characterized by single-crystal X-ray crystallography and a range of spectroscopic techniques, ambiguities remain regarding the details of the molecular structures of the spectroscopically observed forms. We use density functional theory (DFT) computations on small-molecule computational models of the [FeFe]H2ase active site to address this problem. Specifically, a series of structural candidates are geometry optimized and their infrared (IR) spectra are simulated using the computed C-O and C-N stretching frequencies and infrared intensities. Structural assignments are made by comparing these spectra to the experimentally determined IR spectra for each form. The H red form is assigned as a mixture of an Fe(I)Fe(I) form with an open site on the distal iron center and either a Fe(I)Fe(I) form in which the distal cyanide has been protonated or a Fe(II)Fe(II) form with a bridging hydride ligand. The Hox form is assigned as a valence-localized Fe(I)Fe(II) redox level with an open site at the distal iron. The Hox(air)(ox) form is assigned as an Fe(II)Fe(II) redox level with OH(-) or OOH(-) bound to the distal iron center that may or may not have an oxygen atom bound to one of the sulfur atoms of the dithiolate linker. Comparisons of the computed IR spectra of the (12)CO and (13)CO inhibited form with the experimental IR spectra show that exogenous CO binds terminally to the distal iron center.  相似文献   

6.
本文成功利用金属中心为NiRu的NiFe氢化酶模拟物,在乙腈和水的混合溶剂中实现了人工光合成制氢。最优条件下,体系基于NiRu催化剂的产氢TON值高达1893,前10 min的TOF为2.6 s-1,并且通过电化学测试对催化循环过程中所生成的金属氢化物中间体进行了表征。  相似文献   

7.
The [NiFe]-hydrogenase model complex NiFe(pdt)(dppe)(CO)(3) (1) (pdt = 1,3-propanedithiolate) has been efficiently synthesized and found to be robust. This neutral complex sustains protonation to give the first nickel-iron hydride [1H]BF(4). One CO ligand in [1H]BF(4) is readily substituted by organophosphorus ligands to afford the substituted derivatives [HNiFe(pdt)(dppe)(PR(3))(CO)(2)]BF(4), where PR(3) = P(OPh)(3) ([2H]BF(4)); PPh(3) ([3H]BF(4)); PPh(2)Py ([4H]BF(4), where Py = 2-pyridyl). Variable temperature NMR measurements show that the neutral and protonated derivatives are dynamic on the NMR time scale, which partially symmetrizes the phosphine complex. The proposed stereodynamics involve twisting of the Ni(dppe) center, not rotation at the Fe(CO)(2)(PR(3)) center. In MeCN solution, 3, which can be prepared by deprotonation of [3H]BF(4) with NaOMe, is about 10(4) stronger base than is 1. X-ray crystallographic analysis of [3H]BF(4) revealed a highly unsymmetrical bridging hydride, the Fe-H bond being 0.40 ? shorter than the Ni-H distance. Complexes [2H]BF(4), [3H]BF(4), and [4H]BF(4) undergo reductions near -1.46 V vs Fc(0/+). For [2H]BF(4), this reduction process is reversible, and we assign it as a one-electron process. In the presence of trifluoroacetic acid, proton reduction catalysis coincides with this reductive event. The dependence of i(c)/i(p) on the concentration of the acid indicates that H(2) evolution entails protonation of a reduced hydride. For [2H](+), [3H](+), and [4H](+), the acid-independent rate constants are 50-75 s(-1). For [2H](+) and [3H](+), the overpotentials for H(2) evolution are estimated to be 430 mV, whereas the overpotential for the N-protonated pyridinium complex [4H(2)](2+) is estimated to be 260 mV. The mechanism of H(2) evolution is proposed to follow an ECEC sequence, where E and C correspond to one-electron reductions and protonations, respectively. On the basis of their values for its pK(a) and redox potentials, the room temperature values of ΔG(H?) and ΔG(H-) are estimated as respectively as 57 and 79 kcal/mol for [1H](+).  相似文献   

8.
A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2‐bis(2‐thiabutyl‐3,3‐dimethyl‐4‐selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X‐ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2‐bis(4‐mercapto‐3,3‐dimethyl‐2‐thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution.  相似文献   

9.
A number of thermally stable iron(II)-thiolate cyanocarbonyl complexes, cis,cis-[Fe(CN)2(CO)2(CS3-S,S)]2-(1), mer-[Fe(CO)2(CN)3(NCCH3)]-(2)mer-[Fe(CO)3(CN)(CS3-S,S)]-(3), cis-[Fe(CO)2(CN)(S(CH2)2S(CH2)2S-S,S,S)]-(4), [Fe(CO)2(CN)3Br]2-(5), mer-[Fe(CO)2(CN)3(m-SC6H4Br)]2-(6) and mer-[Fe(CO)2(CN)3(SPh)]2-(7) were isolated and characterized by IR and X-ray diffraction analysis. The extrusion of one strong sigma-donor CN- ligand instead of CO from the iron(II) center of the thermally stable complexes [FeII(CO)2(CN)3Br]2-(5) containing less electron-donating bromide reflects the electron-rich character of the mononuclear [FeII(CN)2(CO)2(CS3-S,S)]2-(1) when ligated by by the bidentate thiolate, and the combination of one cyanide, two carbonyls and a tridentate thiolate provides the stable complex 4 as a result of the reaction of complex 5 and chelating ligand [S(CH2)2S(CH2)2S]2-. The preference of the sixth ligand coordinated to the unsaturated [FeII(CO)(CN)2(CS3-S,S)]2- Fe(II) center, the iron-site architecture of the bimetallic Ni-Fe active-site of [NiFe] hydrogenases, is a strong pi-acceptor CO group. Scrutiny of the coordination chemistry of iron(II)-thiolate cyanocarbonyl species [FeII(CO)x(CN)y(SR)z]n- reveals that certain combinations of thiolate, cyanide and carbonyl ligands (3 < or = y+z > or = 4) bound to Fe(II) are stable and this could point the way to understand the reasons for Nature's choice of combinations of these ligands in hydrogenases.  相似文献   

10.
The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.  相似文献   

11.
In the search for complexes modeling the [Fe(CN)(2)(CO)(cysteinate)(2)] cores of the active centers of [NiFe] hydrogenases, the complex (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')] (4) was found ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide(2-)). Starting complex for the synthesis of 4 was [Fe(CO)(2)('S(3)')](2) (1). Complex 1 formed from [Fe(CO)(3)(PhCH=CHCOMe)] and neutral 'S(3)'-H(2). Reactions of 1 with PCy(3) or DPPE (1,2-bis(diphenylphosphino)ethane) yielded diastereoselectively [Fe(CO)(2)(PCy(3))('S(3)')] (2) and [Fe(CO)(dppe)('S(3)')] (3). The diastereoselective formation of 2 and 3 is rationalized by the trans influence of the 'S(3)'(2-) thiolate and thioether S atoms which act as pi donors and pi acceptors, respectively. The trans influence of the 'S(3)'(2-) sulfur donors also rationalizes the diastereoselective formation of the C(1) symmetrical anion of 4, when 1 is treated with four equivalents of NEt(4)CN. The molecular structures of 1, 3 x 0.5 C(7)H(8), and (AsPh(4))(2)[Fe(CN)(2)(CO)('S(3)')] x acetone (4 a x C(3)H(6)O) were determined by X-ray structure analyses. Complex 4 is the first complex that models the unusual 2:1 cyano/carbonyl and dithiolate coordination of the [NiFe] hydrogenase iron site. Complex 4 can be reversibly oxidized electrochemically; chemical oxidation of 4 by [Fe(Cp)(2)PF(6)], however, led to loss of the CO ligand and yielded only products, which could not be characterized. When dissolved in solvents of increasing proton activity (from CH(3)CN to buffered H(2)O), complex 4 exhibits drastic nu(CO) blue shifts of up to 44 cm(-1), and relatively small nu(CN) red shifts of approximately 10 cm(-1). The nu(CO) frequency of 4 in H(2)O (1973 cm(-1)) is higher than that of any hydrogenase state (1952 cm(-1)). In addition, the nu(CO) frequency shift of 4 in various solvents is larger than that of [NiFe] hydrogenase in its most reduced or oxidized state. These results demonstrate that complexes modeling properly the nu(CO) frequencies of [NiFe] hydrogenase probably need a [Ni(thiolate)(2)] unit. The results also demonstrate that the nu(CO) frequency of [Fe(CN)(2)(CO)(thiolate)(2)] complexes is more significantly shifted by changing the solvent than the nu(CO) frequency of [NiFe] hydrogenases by coupled-proton and electron-transfer reactions. The "iron-wheel" complex [Fe(6)[Fe('S(3)')(2)](6)] (6) resulting as a minor by-product from the recrystallization of 2 in boiling toluene could be characterized by X-ray structure analysis.  相似文献   

12.
Ni     
How do [NiFe] hydrogenases activate H(2)? Hydrogenases are key enzymes in the biological hydrogen and energy metabolism; the mechanism of H(2) activation, however, is unclarified. In particular, the oxidation states of the metals involved are discussed controversially. The title complex demonstrates that a distorted diamagnetic Ni(II) center and thiolate donors are sufficient (see picture) to catalyze the key reaction of hydrogenases, the H(2) heterolysis.  相似文献   

13.
自然界中,[NiFeSe]氢化酶比[NiFe]氢化酶具有更高的催化产氢活性和特殊的耐氧性。其较高的催化活性机制被认为跟[NiFeSe]氢化酶上所取代的硒(Se)原子密切相关。因此,[NiFeSe]氢化酶的特殊结构、性质及催化机制强烈激发科学家们设计并合成各种模拟[NiFeSe]氢化酶活性中心的镍铁硒或镍硒配合物(也即受生物启发的模拟物)。本论文工作首先合成及结构表征了六个基于双硒配体与含二茂铁的双膦配体的镍硒配合物(2a–2c,3a–3b,4);然后将这些镍硒配合物用作[NiFeSe]氢化酶的功能模型物,利用电化学方法,以三氟乙酸为质子给体测定了相应的电催化产氢活性。在相同实验条件下,分别研究了双硒配体上不同的取代基团,及含二茂铁的双膦配体上不同取代基等结构修饰方式对镍硒配合物催化产氢性能的影响。结果表明:这些镍硒配合物的催化产氢活性跟双硒配体及双膦配体的结构有很大关系,对应的催化转化频率(TOF)分别为12182 s?1(2a),15385 s?1(2b),20359 s?1(2c),106 s?1(3a),794 s?1(3b),13580 s?1(4)。其中,1,2-二硒-4,5-二甲基和1,1’-双(二苯膦)二茂铁配体与镍离子配位形成的镍硒配合物2c具有最好的电催化活性(TOF=20359 s?1),其产氢性能已大大超过先前我们课题组所报道的由1,2-苯二硒、1,1’-双(二苯膦)二茂铁所配位形成的镍硒配合物1(TOF=7838 s?1)。  相似文献   

14.
Dihydrogen (H(2)) production by [FeFe]-hydrogenases is strongly inhibited by formaldehyde (methanal) in a reaction that is rapid, reversible, and specific to this type of hydrogenase. This discovery, using three [FeFe]-hydrogenases that are homologous about the active site but otherwise structurally distinct, was made by protein film electrochemistry, which measures the activity (as electrical current) of enzymes immobilized on an electrode; importantly, the inhibitor can be removed after addition. Formaldehyde causes rapid loss of proton reduction activity which is restored when the solution is exchanged. Inhibition is confirmed by conventional solution assays. The effect depends strongly on the direction of catalysis: inhibition of H(2) oxidation is much weaker than for H(2) production, and formaldehyde also protects against CO and O(2) inactivation. By contrast, inhibition of [NiFe]-hydrogenases is weak. The results strongly suggest that formaldehyde binds at, or close to, the active site of [FeFe]-hydrogenases at a site unique to this class of enzyme--highly conserved lysine and cysteine residues, the bridgehead atom of the dithiolate ligand, or the reduced Fe(d) that is the focal center of catalysis.  相似文献   

15.
The carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F has been characterized by X-ray crystallography and absorption and resonance Raman spectroscopy. Nine crystal structures of the [NiFe]hydrogenase in the CO-bound and CO-liberated forms were determined at 1.2-1.4 A resolution. The exogenously added CO was assigned to be bound to the Ni atom at the Ni-Fe active site. The CO was not replaced with H(2) in the dark at 100 K, but was liberated by illumination with a strong white light. The Ni-C distances and Ni-C-O angles were about 1.77 A and 160 degrees, respectively, except for one case (1.72 A and 135 degrees ), in which an additional electron density peak between the CO and Sgamma(Cys546) was recognized. Distinct changes were observed in the electron density distribution of the Ni and Sgamma(Cys546) atoms between the CO-bound and CO-liberated structures for all the crystals tested. The novel structural features found near the Ni and Sgamma(Cys546) atoms suggest that these two atoms at the Ni-Fe active site play a role during the initial H(2)-binding process. Anaerobic addition of CO to dithionite-reduced [NiFe]hydrogenase led to a new absorption band at about 470 nm ( approximately 3000 M(-1)cm(-1)). Resonance Raman spectra (excitation at 476.5 nm) of the CO complex revealed CO-isotope-sensitive bands at 375/393 and 430 cm(-1) (368 and 413 cm(-1) for (13)C(18)O). The frequencies and relative intensities of the CO-related Raman bands indicated that the exogenous CO is bound to the Ni atom with a bent Ni-C-O structure in solution, in agreement with the refined structure determined by X-ray crystallography.  相似文献   

16.
Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).  相似文献   

17.
The dicyanodicarbonyliron(II) thiolate complexes trans,cis-[(CN)(2)(CO)(2)Fe(S,S-C-R)](-) (R = OEt (2), N(Et)(2) (3)) were prepared by the reaction of [Na][S-C(S)-R] and [Fe(CN)(2)(CO)(3)(Br)](-) (1). Complex 1 was obtained from oxidative addition of cyanogen bromide to [Fe(CN)(CO)(4)](-). In a similar fashion, reaction of complex 1 with [Na][S,O-C(5)H(4)N], and [Na][S,N-C(5)H(4)] produced the six-coordinate trans,cis-[(CN)(2)(CO)(2)Fe(S,O-C(5)H(4)N)](-) (6) and trans,cis-[(CN)(2)(CO)(2)Fe(S,N-C(5)H(4))](-) (7) individually. Photolysis of tetrahydrofuran (THF) solution of complexes 2, 3, and 7 under CO led to formation of the coordinatively unsaturated iron(II) dicyanocarbonyl thiolate compounds [(CN)(2)(CO)Fe(S,S-C-R)](-) (R = OEt (4), N(Et)(2) (5)) and [(CN)(2)(CO)Fe(S,N-C(5)H(4))](-) (8), respectively. The IR v(CN) stretching frequencies and patterns of complexes 4, 5, and 8 have unambiguously identified two CN(-) ligands occupying cis positions. In addition, density functional theory calculations suggest that the architecture of five-coordinate complexes 4, 5, and 8 with a vacant site trans to the CO ligand and two CN(-) ligands occupying cis positions serves as a conformational preference. Complexes 2, 3, and 7 were reobtained when the THF solution of complexes 4, 5, and 8 were exposed to CO atmosphere at 25 degrees C individually. Obviously, CO ligand can be reversibly bound to the Fe(II) site in these model compounds. Isotopic shift experiments demonstrated the lability of carbonyl ligands of complexes 2, 3, 4, 5, 7, and 8. Complexes [(CN)(2)(CO)Fe(S,S-C-R)](-) and NiA/NiC states [NiFe] hydrogenases from D. gigas exhibit a similar one-band pattern in the v(CO) region and two-band pattern in the v(CN) region individually, but in different positions, which may be accounted for by the distinct electronic effects between [S,S-C-R](-) and cysteine ligands. Also, the facile formations of five-coordinate complexes 4, 5, and 8 imply that the strong sigma-donor, weak pi-acceptor CN(-) ligands play a key role in creating/stabilizing five-coordinate iron(II) [(CN)(2)(CO)Fe(S,S-C-R)](-) complexes with a vacant coordination site trans to the CO ligand.  相似文献   

18.
Density functional theory (DFT) was employed to investigate the behavior of a series of catalysts used in the hydrogen evolution reaction (HER, 2H(+) + 2e(-) --> H(2)). The kinetics of the HER was studied on the [NiFe] hydrogenase, the [Ni(PS3*)(CO)](1)(-) and [Ni(PNP)(2)](2+) complexes, and surfaces such as Ni(111), Pt(111), or Ni(2)P(001). Our results show that the [NiFe] hydrogenase exhibits the highest activity toward the HER, followed by [Ni(PNP)(2)](2+) > Ni(2)P > [Ni(PS3*)(CO)](1)(-) > Pt > Ni in a decreasing sequence. The slow kinetics of the HER on the surfaces is due to the fact that the metal hollow sites bond hydrogen too strongly to allow the facile removal of H(2). In fact, the strong H-Ni interaction on Ni(2)P(001) can lead to poisoning of the highly active sites of the surface, which enhances the rate of the HER and makes it comparable to that of the [NiFe] hydrogenase. In contrast, the promotional effect of H-poisoning on the HER on Pt and Ni surfaces is relatively small. Our calculations suggest that among all of the systems investigated, Ni(2)P should be the best practical catalyst for the HER, combining the high thermostability of the surfaces and high catalytic activity of the [NiFe] hydrogenase. The good behavior of Ni(2)P(001) toward the HER is found to be associated with an ensemble effect, where the number of active Ni sites is decreased due to presence of P, which leads to moderate bonding of the intermediates and products with the surface. In addition, the P sites are not simple spectators and directly participate in the HER.  相似文献   

19.
The regulatory H2-sensing [NiFe] hydrogenase of the beta-proteobacterium Ralstonia eutropha displays an Ni-C "active" state after reduction with H2 that is very similar to the reduced Ni-C state of standard [NiFe] hydrogenases. Pulse electron nuclear double resonance (ENDOR) and four-pulse ESEEM (hyperfine sublevel correlation, HYSCORE) spectroscopy are applied to obtain structural information on this state via detection of the electron-nuclear hyperfine coupling constants. Two proton hyperfine couplings are determined by analysis of ENDOR spectra recorded over the full magnetic field range of the EPR spectrum. These are associated with nonexchangeable protons and belong to the beta-CH(2) protons of a bridging cysteine of the NiFe center. The signals of a third proton exhibit a large anisotropic coupling (Ax = 18.4 MHz, Ay = -10.8 MHz, Az = -18 MHz). They disappear from the 1H region of the ENDOR spectra after exchange of H2O with 2H2O and activation with 2H2 instead of H2 gas. They reappear in the 2H region of the ENDOR and HYSCORE spectra. Based on a comparison with the spectroscopically similar [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F, for which the g-tensor orientation of the Ni-C state with respect to the crystal structure is known (Foerster et al. J. Am. Chem. Soc. 2003, 125, 83-93), an assignment of the 1H hyperfine couplings is proposed. The exchangeable proton resides in a bridging position between the Ni and Fe and is assigned to a formal hydride ion. After illumination at low temperature (T = 10 K), the Ni-L state is formed. For the Ni-L state, the strong hyperfine coupling observed for the exchangeable hydrogen in Ni-C is lost, indicating a cleavage of the metal-hydride bond(s). These experiments give first direct information on the position of hydrogen binding in the active NiFe center of the regulatory hydrogenase. It is proposed that such a binding situation is also present in the active Ni-C state of standard hydrogenases.  相似文献   

20.
Zhou T  Mo Y  Liu A  Zhou Z  Tsai KR 《Inorganic chemistry》2004,43(3):923-930
The mechanism of the enzymatic hydrogen bond forming/breaking (2H(+) + 2e<==>H(2)) and the plausible charge and spin states of the catalytic diiron subcluster [FeFe](H) of the H cluster in Fe-only hydrogenases are probed computationally by the density functional theory. It is found that the active center [FeFe](H) can be rationally simulated as [[H](CH(3)S)(CO)(CN(-))Fe(p)(CO(b))(mu-SRS)Fe(d)(CO)(CN(-))L], where the monovalence [H] stands for the [4Fe4S](H)(2+) subcluster bridged to the [FeFe](H) moiety, (CH(3)S) represents a Cys-S, and (CO(b)) represents a bridging CO. L could be a CO, H(2)O, H(-), H(2), or a vacant coordination site on Fe(d). Model structures of possible redox states are optimized and compared with the X-ray crystallographic structures and FTIR experimental data. On the basis of the optimal structures, we study the most favorable path of concerted proton transfer and electron transfer in H(2)-forming/breaking reactions at [FeFe](H). Previous mechanisms derived from quantum chemical computations of Fe-only hydrogenases (Cao, Z.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3734; Fan, H.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828) involved an unidentified bridging residue (mu-SRS), which is either a propanedithiolate or dithiomethylamine. Our proposed mechanism, however, does not require such a ligand but makes use of a shuttle of oxidation states of the iron atoms and a reaction site between the two iron atoms. Therefore, the hydride H(b)(-) (bridged to Fe(p) and Fe(d)) and eta(2)-H(2) at Fe(p) or Fe(d) most possibly play key roles in the dihydrogen reversible oxidation at the [FeFe](H) active center. This suggested way of H(2) formation/splitting is reminiscent of the mechanism of [NiFe] hydrogenases and therefore would unify the mechanisms of the two related enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号