首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
The salts [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2), [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)], [Pt(en)(2)][Au(CN)(2)](2), [Pt(en)(2)][Ag(CN)(2)](2), and [Pt(bipy)(2)][Au(CN)(2)](2) have been prepared by mixing solutions of salts containing the appropriate cation with solutions of K[Au(CN)(2)] or K[Ag(CN)(2)]. Because the platinum atom in the cation is sterically protected, the structures of [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2) and [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)] reveal no close metal-metal interactions. Colorless crystals of [Pt(en)(2)][Au(CN)(2)](2) and [Pt(en)(2)][Ag(CN)(2)](2) are isostructural and involve extended chains of alternating cations and anions that run parallel to the crystallographic a axis, along with isolated anions. In the chains, the metal-metal separations are relatively short: Pt...Au, 3.1799(3) Angstroms; Pt...Ag, 3.1949(2) Angstroms. In [Pt(bipy)(2)][Au(CN)(2)](2), each cation has axial interactions with the anions through close Pt...Au contacts [3.1735(6) Angstroms]. In addition, the anions are weakly linked through Au...Au contacts of 3.5978(9) Angstroms. Unlike the previously reported Pt/Au complex [Pt(NH(3))(4)][Au(CN)(2)](2).1.5H(2)O, which is luminescent, none of the salts reported here luminesce.  相似文献   

2.
To investigate the factors influencing the formation of intermolecular Au···NC interactions between [Au(CN)(4)](-) units, a series of [cation](n+)[Au(CN)(4)](n) double salts was synthesized, structurally characterized and probed by IR and (15)N{(1)H} CP-MAS NMR spectroscopy. Thus, [(n)Bu(4)N][Au(CN)(4)], [AsPh(4)][Au(CN)(4)], [N(PPh(3))(2)][Au(CN)(4)], [Co(1,10-phenanthroline)(3)][Au(CN)(4)](2), and [Mn(2,2';6',2'-terpyridine)(2)][Au(CN)(4)](2) show [Au(CN)(4)](-) anions that are well-separated from one another; no Au-Au or Au···NC interactions are present. trans-[Co(1,2-diaminoethane)(2)Cl(2)][Au(CN)(4)] forms a supramolecular structure, where trans-[Co(en)(2)Cl(2)](+) and [Au(CN)(4)](-) ions are found in separate layers connected by Au-CN···H-N hydrogen-bonding; weak Au···NC coordinate bonds complete octahedral Au(III) centers, and support a 2-D (4,4) network motif of [Au(CN)(4)](-)-units. A similar structure-type is formed by [Co(NH(3))(6)][Au(CN)(4)](3)·(H(2)O)(4). In [Ni(1,2-diaminoethane)(3)][Au(CN)(4)](2), intermolecular Au···NC interactions facilitate formation of 1-D chains of [Au(CN)(4)](-) anions in the supramolecular structure, which are separated from one another by [Ni(en)(3)](2+) cations. In [1,4-diazabicyclo[2.2.2]octane-H][Au(CN)(4)], the monoprotonated amine cation forms a hydrogen-bond to the [Au(CN)(4)](-) unit on one side, while coordinating to the axial sites of the gold(III) center through the unprotonated amine on the other, thereby generating a 2-D (4,4) net of cations and anions; an additional, uncoordinated [Au(CN)(4)](-)-unit lies in the central space of each grid. This body of structural data indicates that cations with hydrogen-bonding groups can induce intermolecular Au···NC interactions, while the cationic charge, shape, size, and aromaticity have little effect. While the ν(CN) values are poor indicators of the presence or absence of N-cyano bridging between [Au(CN)(4)](-)-units (partly because of the very low intensity of the observed bands), (15)N{(1)H} CP-MAS NMR reveals well-defined, ordered cyanide groups in the six diamagnetic compounds with chemical shifts between 250 and 275 ppm; the resonances between 260 and 275 ppm can be assigned to C-bound terminal ligands, while those subject to CN···H-N bonding resonate lower, around 250-257 ppm. The (15)N chemical shift also correlates with the intermolecular Au···N distances: the shortest Au-N distances also shift the (15)N peak to lower frequency. This provides a real, spectroscopically measurable electronic effect associated with the crystallographic observation of intermolecular Au···NC interactions, thereby lending support for their viability.  相似文献   

3.
We have prepared novel room temperature ionic liquids (RTILs) with trimethylsilylmethyl (TMSiM)-substituted imidazolium cations and compared the properties of these liquids with those for which the TMSiM group is replaced by the analogous neopentyl group. The ionic liquids are prepared with both tetrafluoroborate (BF(4)(-)) and bis(trifluoromethylsulfonyl)imide (NTf(2)(-)) anions paired with the imidazolium cations. At 22 degrees C, the TMSiM-substituted imidazolium ILs have shear viscosities that are reduced by a factor of 1.6 and 7.4 relative to the alkylimidazolium ILs for the NTf(2)(-) and BF(4)(-) anions, respectively. To understand the effect of silicon substitution on the viscosity, the charge densities have been calculated by using density functional theory electronic structure calculations. The ultrafast intermolecular, vibrational, and orientational dynamics of these RTILs have been measured by using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The intermolecular dynamical spectrum provides an estimate of the strength of interactions between the ions in the RTILs, and provides a qualitative explanation for the observed reduction in viscosity for the silicon-substituted RTILs.  相似文献   

4.
The synthesis, structure, spectroscopic characterization and electrical resistivity of the [EtV](2)[Fe(4)Pt(CO)(16)], [EtV][Fe(3)Pt(3)(CO)(15)].THF, [EtV][Fe(4)Au(CO)(16)](2)2.THF (EtV=1,1'-diethyl-4,4'-bipyridilium cation) and [NEt(4)](2)[Fe(4)Au(CO)(16)] is reported. The crystal structure of [EtV](2)[Fe(4)Pt(CO)(16)] is based on infinite stacks of [(EtV)(*+)](2) pi-dimers rotated by 90 degrees and isolated [Fe(4)Pt(CO)(16)](2-) ions. Within each pi-dimer, the [EtV](*+) radical ions are perfectly eclipsed and the distance between their mean planes is 3.275 A. The EPR spectrum of the solid material at room temperature clearly indicates the presence of a significantly populated triplet state of the pi-dimer, by showing signals both at Deltam=1 and Deltam=2. The solid-state structure of [EtV][Fe(3)Pt(3)(CO)(15)].THF is based on the ionic packing of [EtV](2+) and [Fe(3)Pt(3)(CO)(15)](2-) ions, inferred from a comparison of their molecular parameters with literature data. Significant electron transfer could have been expected to give [EtV](*+)[Fe(3)Pt(3)(CO)(15)](*-) on the basis of their formal redox potentials. In spite of their different stoichiometries, the structures of [EtV][Fe(4)Au(CO)(16)](2).2 THF and [NEt(4)](2)[Fe(4)Au(CO)(16)] both contain an isomer of the monoanion [Fe(4)Au(CO)(16)](-) in solution (previously characterized in the solid state as a [NMe(3)CH(2)Ph](2)[Fe(4)Au(CO)(16)]Cl mixed salt). Resistivity measurements on pellets of powdered samples of the above compounds indicate that their tetrasubstituted ammonium salts, and complex [EtV][Fe(4)Au(CO)(16)](2)2.THF, largely behave as insulators. However, the [EtV](2)[Fe(4)Pt(CO)(16)] and [EtV][Fe(3)Pt(3)(CO)(15)].THF samples respectively display resistivities 3 and 4 orders of magnitude less than those of their corresponding ammonium salts and could be classified as semiconductor materials.  相似文献   

5.
The salts [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, are prepared by reductive carbonylation of Pd[Pd(SO(3)F)(6)], Pt(SO(3)F)(4) or PtF(6) in liquid SbF(5), or HF-SbF(5). The resulting moisture-sensitive, colorless solids are thermally stable up to 140 degrees C (M = Pd) or 200 degrees C (M = Pt). Their thermal decompositions are studied by differential scanning calorimetry (DSC). Single crystals of both salts are suitable for an X-ray diffraction study at 180 K. Both isostructural salts crystallize in the monoclinic space group P2(1)/c (No. 14). The unit cell volume of [Pt(CO)(4)][Sb(2)F(11)](2) is smaller than that of [Pd(CO)(4)][Sb(2)F(11)](2) by about 0.4%. The cations [M(CO)(4)](2+), M = Pd, Pt, are square planar with only very slight angular and out-of-plane deviations from D(4)(h)() symmetry. The interatomic distances and bond angles for both cations are essentially identical. The [Sb(2)F(11)](-) anions in [M(CO)(4)][Sb(2)F(11)](2,) M = Pd, Pt, are not symmetry-related, and both pairs differ in their Sb-F-Sb bridge angles and their dihedral angles. There are in each salt four to five secondary interionic C- -F contacts per CO group. Of these, two contacts per CO group are significantly shorter than the sum of the van der Waals radii by 0.58 - 0.37 A. In addition, structural, and spectroscopic details of recently synthesized [Rh(CO)(4)][Al(2)Cl(7)] are reported. The cations [Rh(CO)(4)](+) and [M(CO)(4)](2+), M = Pd, Pt, are characterized by IR and Raman spectroscopy. Of the 16 vibrational modes (13 observable, 3 inactive) 10 (Pd, Pt) or 9 (Rh), respectively, are found experimentally. The vibrational assignments are supported by DFT calculations, which provide in addition to band positions also intensities of IR bands and Raman signals as well as internal force constants for the cations. (13)C NMR measurements complete the characterization of the square planar metal carbonyl cations. The extensive characterization of [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, reported here, allows a comparison to linear and octahedral [M(CO)(n)()][Sb(2)F(11)](2) salts [M = Hg (n = 2); Fe, Ru, Os (n = 6)] and their derivatives, which permit a deeper understanding of M-CO bonding in the solid state for superelectrophilic cations with [Sb(2)F(11)](-) or [SbF(6)](-) as anions.  相似文献   

6.
Luminescent [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O), which forms from aqueous solutions of [(NH(3))(4)Pt]Cl(2) and K[Au(CN)(2)], crystallizes with extended chains of the two ions with multiple close Pt...Au (3.2804(4) and 3.2794(4) A) and Au...Au (3.2902(5), 3.3312(5), and 3.1902(4) A) contacts. Nonluminescent [(NH(3))(4)Pt][Ag(CN)(2)](2).1.4(H(2)O) is isostructural with [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O). Treatment of [(NH(3))(6)Ni]Cl(2) with K[Au(CN)(2)] forms [(NH(3))(2)Ni][Au(CN)(2)](2) in which the [Au(CN)(2)](-) ions function as nitrile ligands toward nickel, which assumes a six-coordinate structure with trans NH(3) ligands. The [Au(CN)(2)](-) ions self-associate into linear columns with close Au...Au contacts of 3.0830(5) A, and pairs of gold ions in these chains make additional but longer (3.4246(5) A) contacts with other gold ions.  相似文献   

7.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

8.
The electrochemical oxidation of dissolved hydrogen gas has been studied in a range of room-temperature ionic liquids (RTILs), namely [C(2)mim][NTf(2)], [C(4)mim][NTf(2)], [N(6,2,2,2)][NTf(2)], [P(14,6,6,6)][NTf(2)], [C(4)mpyrr][NTf(2)], [C(4)mim][BF(4)], [C(4)mim][PF(6)], [C(4)mim][OTf], and [C(6)mim]Cl on a platinum microdisk electrode of diameter 10 microm. In all cases, except [C(6)mim]Cl, a broad quasi-electrochemically reversible oxidation peak between 0.3 to 1.3 V vs Ag was seen prior to electrode activation ([C(6)mim]Cl showed an almost irreversible wave). When the electrode was pre-anodized ("activated") at 2.0 V vs Ag for 1 min, the peak separations became smaller, and the peak shape became more electrochemically reversible. It is thought that the electrogenerated protons chemically combine with the anions (A-) of the RTIL. The appearance and position of the reverse (reduction) peak on the voltammograms is thought to depend on three factors: (1) the stability of the protonated anion, HA, (2) the position of equilibrium of the protonation reaction HA<==> H+ + A- , and (3) any follow-up chemistry, e.g., dissociation or reaction of the protonated anion, HA. This is discussed for the five different anions studied. The reduction of HNTf(2) was also studied in two [NTf(2)]- -based RTILs and was compared to the oxidation waves from hydrogen. The results have implications for the defining of pKa in RTIL media, for the development of suitable reference electrodes for use in RTILs, and in the possible amperometric sensing of H2 gas.  相似文献   

9.
Nine new double-salt compounds have been prepared and six crystal structures are reported that demonstrate a general metathesis route to double-salt compounds with metallophilic interactions. The compounds contain [Pt(terpy)X]+ or [Au(bpy)X2]+ cations, Au(III) or Au(I) anions such as [AuBr4]- or [AuCl2]-, and are prepared in water and recrystallized from organic solvents. In all crystallographically characterized cases, there exist metallophilic interactions between cations and anions, demonstrating the power of this general route. In most cases, there exists an unbroken chain of metallophilic interactions through the crystal, forming single-atom-wide wires.  相似文献   

10.
The electronic properties of Pt nanoparticles deposited on CeO(2)(111) and CeO(x)/TiO(2)(110) model catalysts have been examined using valence photoemission experiments and density functional theory (DFT) calculations. The valence photoemission and DFT results point to a new type of "strong metal-support interaction" that produces large electronic perturbations for small Pt particles in contact with ceria and significantly enhances the ability of the admetal to dissociate the O-H bonds in water. When going from Pt(111) to Pt(8)/CeO(2)(111), the dissociation of water becomes a very exothermic process. The ceria-supported Pt(8) appears as a fluxional system that can change geometry and charge distribution to accommodate adsorbates better. In comparison with other water-gas shift (WGS) catalysts [Cu(111), Pt(111), Cu/CeO(2)(111), and Au/CeO(2)(111)], the Pt/CeO(2)(111) surface has the unique property that the admetal is able to dissociate water in an efficient way. Furthermore, for the codeposition of Pt and CeO(x) nanoparticles on TiO(2)(110), we have found a transfer of O from the ceria to Pt that opens new paths for the WGS process and makes the mixed-metal oxide an extremely active catalyst for the production of hydrogen.  相似文献   

11.
trans-[Pt(C[triple bond]C(Ar)C[triple bond]CH)2(PMe3)2](Ar = C(6)Me(4)-3,4,5,6) (1) reacts with PPN[Au(acac)(2)](Hacac = acetylacetone; 1 : 1.16 molar ratio; PPN = (Ph3P)2N) to give PPN[(Au[Pt(PMe3)2]2)(mu-Ar(C[triple bond]C)2)3] (2) the crystal structure of which showed the anions as quasi equilateral triangles stacked parallel to each other through C-HAu interactions, resulting in channels of rhombic cross-section.  相似文献   

12.
Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.  相似文献   

13.
The salts K[AuCl(2)(CN)(2)]·H(2)O (1), K[AuBr(2)(CN)(2)]·2H(2)O (2) and K[AuI(2)(CN)(2)]·?H(2)O (3) were synthesized and structurally characterized. Compound 1 crystallizes as a network of square planar [AuCl(2)(CN)(2)](-) anions separated by K(+) cations. However, 2 and 3 feature 2-D sheets built by the aggregation of [AuX(2)(CN)(2)](-) anions via weak, intermolecular X···X interactions. The mixed anion double salts K(3)[Au(CN)(2)](2)[AuBr(2)(CN)(2)]·H(2)O (4) and K(5)[Au(CN)(2)](4)[AuI(2)(CN)(2)]·2H(2)O (5) were also synthesized by cocrystallization of K[Au(CN)(2)] and the respective K[AuX(2)(CN)(2)] salts. Similarly to 2 and 3, the [Au(CN)(2)](-) and [AuX(2)(CN)(2)](-) anions form 2-D sheets via weak, intermolecular Au(I)···X and Au(I)···Au(I) interactions. In the case of 5, a rare unsupported Au(I)···Au(III) interaction of 3.5796(5) ? is also seen between the two anionic units. Despite the presence of Au(I) aurophilic interactions of 3.24-3.45 ?, neither 4 nor 5 exhibit any detectable emission at room temperature, suggesting that the presence of Au(I)···X or Au(I)···Au(III) interactions may affect the emissive properties.  相似文献   

14.
The structures of the trinuclear gold(I), [Au(3)(2,6-Me(2)-form)(2)-(THT)Cl], the dinuclear [Au(2)(2,6-Me(2)-form)(2)], and the oxidative-addition product [Au(2)(2,6-Me(2)-form)(2)Cl(2)] formamidinate complexes are reported. The trinuclear complex is stable with gold-gold distances 3.01 and 3.55 A. The gold-gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 A, similar to observations made with the dithiolates and ylides.  相似文献   

15.
Li CK  Lu XX  Wong KM  Chan CL  Zhu N  Yam VW 《Inorganic chemistry》2004,43(23):7421-7430
A series of luminescent dinuclear gold(I) complexes with different crown ether pendants, [Au(2)(PwedgeP)(S-B15C5)(2)] [S-B15C5 = 4'-mercaptobenzo-15-crown-5, P(wedge)P = bis(dicyclohexylphosphino)methane (dcpm) (1), bis(diphenylphosphino)methane (dppm) (2)] and [Au(2)(P(wedge)P)(S-B18C6)(2)] [S-B18C6 = 4'-mercaptobenzo-18-crown-6, P(wedge)P = dcpm (3), dppm (4)], and their related crown-free complexes, [Au(2)(P(wedge)P)(SC(6)H(3)(OMe)(2)-3,4)(2)] [P(wedge)P = dcpm (5), dppm (6)], were synthesized. The low-energy emission of the mercaptocrown ether-containing gold(I) complexes are tentatively assigned as originated from states derived from a S --> Au ligand-to-metal charge transfer (LMCT) transition. The crown ether-containing gold(I) complexes showed specific binding abilities toward various metal cations according to the ring size of the crown pendants. Spectroscopic evidence was provided for the metal-ion-induced switching on of the gold...gold interactions upon the binding of particular metal ions in a sandwich binding mode.  相似文献   

16.
The synthesis and coordination of 2-diphenylphosphinopicolinamide (dpppa 1) is reported. Coordination complexes with Pd, Pt, Ru, Rh, Ir and Au are described. The ligand behaves as a monodentate P donor in complexes such as [PtCl2(dpppa-P2)], [PdCl(allyl)(dpppa-P)], [RuCl2(p-Cymene)(dpppa-P)], cis-[PtCl2(dpppa-P)(PR3)] and [AuCl(dpppa-P)]. Bidentate P, O coordination was accomplished by reaction of BuLi with [RuCl2(p-Cymene)(dpppa-P)], to give [RuCl(p-Cymene)(dpppa-P,O). P,N donor behaviour was achieved by reaction of a monodentate complex with a halide abstractor [AgBF4] generating [RuCl(p-Cymene)(dpppa-P,N)][ClO4] and[RhCl(η5-C5Me5)(dpppa-P,N)][BF4]. The X-ray structures of dpppa, dpppaO, dpppaS, four monodentate complexes and [RuCl(p-Cymene)(dpppa-P,O) are reported. All of the structures contain intramolecular N–HN hydrogen bonding.  相似文献   

17.
The crystal structures and magnetic properties were investigated experimentally and theoretically for two S = ? spin chain complexes, which consist of [M(mnt)(2)](-) (M = Pt for 1 or Pd for 2) with 1-(4'-bromo-2'-flurobenzyl)-4-aminopyridinium (1-BrFBz-4-NH(2)Py(+)). The 1-BrFBz-4-NH(2)Py(+) cations exhibit different molecular conformations and arrangements in 1 and 2; the [M(mnt)(2)](-) anions form regular stacks in 1, whereas they form irregular stacks in 2. In addition, the intermolecular interactions between the [M(mnt)(2)](-) anions and cations are also different from each other in the crystals of 1 and 2. Complex 1 shows the magnetic characteristics of a low-dimensional antiferromagnetic coupling spin system with a spin-Peierls-type transition around 7 K, and complex 2 exhibits diamagnetism over the temperature range of 5-300 K. Theoretical analyses, based on the calculations for the charge density distributions of [Pt(mnt)(2)](-) and [Pd(mnt)(2)](-) anions and the magnetic exchange constants within the anion spin chains, addressed the diverse molecular alignments in the crystals of 1 and 2 and distinct magnetic behaviors between 1 and 2.  相似文献   

18.
室温离子液体由于其极低的蒸汽压、比较好的热稳定性和化学稳定性、良好的分子结构与性能的可设计性等优点,作为一种新型的环境友好溶剂在很多领域有着广泛的应用.对于离子液体的微观结构和微观性能的研究是设计新型离子液体以及扩展离子液体应用的关键.本文通过荧光探针分子香豆素153(C153)的转动动力学和对微观环境敏感的荧光探针分子1, 3-二(1-芘基)丙烷(BPP)的稳态荧光光谱,探测和表征了烷基取代的离子液体1-丁基-3-甲基咪唑六氟磷酸盐([bmim][PF6])和与其具有相似结构的醚键官能化的离子液体1-甲氧基乙基-3-甲基咪唑六氟磷酸盐([moemim][PF6])的微观结构和微粘度. C153探针分子在离子液体[bmim][PF6]中的转动过程具有快、慢两个组分表明离子液体[bmim][PF6]内部存在松散和紧密的两种结构微区;而C153探针分子在离子液体[moemim][PF6]中的转动动力学只存在一种过程,说明醚键的引入使得[moemim][PF6]内部趋于一种类型的微环境.通过C153探针分子的转动时间研究发现,醚键官能化的离子液体[moemim][PF6]的微粘度小于烷基链取代的离子液体[bmim][PF6],同时通过BPP探针分子的二聚体激基复合物(excimer)与单体(monomer)荧光发射强度的比值(IE/IM)研究也证明这一结果.醚键的引入使得离子液体[moemim][PF6]相对于离子液体[bmim][PF6],侧链的极性更大、柔顺性更好,同时醚键有可能作为氢键的受体与阳离子形成氢键从而削弱离子液体中阴、阳离子间的相互作用,使得离子液体[moemim][PF6]的微观环境比离子液体[bmim][PF6]更为均一,同时具有更小的微粘度.  相似文献   

19.
Acetone solutions of [Au(OClO3)(PCy3)] react with complexes [M{S2C=(t-Bu-fy)}2]2- [t-Bu-fy=2,7-di-tert-butylfluoren-9-ylidene; M=Pd (2a), Pt (2b)] or [M{S2C=(t-Bu-fy)}(dbbpy)] [dbbpy=4,4'-di-tert-butyl-2,2'-bipyridyl; M=Pd (3a), Pt (3b)] to give the heteronuclear complexes [M{S2C=(t-Bu-fy)}2{Au(PCy3)}2] [2:1 molar ratio; M=Pd (4a), Pt (4b)], [M{S2C=(t-Bu-fy)}(dbbpy){Au(PCy3)}]ClO4 [1:1 molar ratio; M=Pd (5a), Pt (5b)], or [M{S2C=(t-Bu-fy)}(dbbpy){Au(PCy3)}2](ClO4)2 [2:1 molar ratio; M=Pd (6a), Pt (6b)]. The crystal structures of 3a, 4a, 4b, 5b, and 6a have been solved by single-crystal X-ray studies and, in the cases of the heteronuclear derivatives, reveal the formation of short Pd...Au or Pt...Au metallophilic contacts in the range of 3.048-3.311 A. Compounds 4a and b and 5a and b undergo a dynamic process in solution that involves the migration of the [Au(PCy3)]+ units between the sulfur atoms of the dithiolato ligands. The coordination of 2a and b and 3a and b to [Au(PCy3)]+ units results in important modifications of their photophysical properties. The dominant effect in the absorption spectra is an increase in the energy of the MLCT (4a and b) or charge transfer to diimine (5a, b, 6a, b) transitions because of a decrease in the energies of the mixed metal/dithiolate HOMOs. The Pd complexes 2a and 4a are luminescent at 77 K, and the features of their emissions are consistent with an essentially metal-centered 3d-d state. The Pt/Au complexes are also luminescent at 77 K, and their emissions can be assigned as originating from a MLCT triplet state (4b) or a mixture of charge transfer to diimine and diimine intraligand pi-pi* triplet states (5b and 6b).  相似文献   

20.
Density functional theory calculations on complexes of 4C1, 1C4 and 2SO ring conformations of methyl beta-D-xylopyranoside 1 with divalent metal cations, M = Mg2+, Ca2+, Zn2+, and Cd2+, are presented. Bridging and pendant cationic, [M(H2O)41]2+ and [M(H2O)(5)1]2+, as well as neutral complexes, [M(OH)2(H2O)(2)1] and [M(OH)2(H2O)(3)1], and neutral complexes involving a doubly deprotonated sugar, [M(H2O)(4)1(2-)], are considered. In aqueous and chloroform solution the stability of cationic and pendant neutral complexes is greatly diminished compared with gas-phase results. In contrast, bridging neutral complexes [M(OH)2(H2O)(2)1] and those of type [M(H2O)(4)1(2-)], are stabilized with increasing solvent polarity. Solvation also profoundly influences the preferred binding position and ring conformation. Compared with complexes of bare metal cations, additional ligands, e.g., H2O or OH-, significantly reduce the stability of 1C4 ring complexes. Irrespective of the cation, the most stable structure of bridging complexes [M(H2O)(4)1]2+ results from coordination of the metal to O3 and O4 of methyl beta-D-xylopyranoside in its 4C1 ring conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号