首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two methodologies of C-C bond formation to achieve organometallic complexes with 7 or 9 conjugated carbon atoms are described. A C7 annelated trans-[Cl(dppe)2Ru=C=C=C-CH=C(CH2)-C[triple bond]C-Ru(dppe)2Cl][X] (X = PF6, OTf) complex is obtained from the diyne trans-[Cl(dppe)2Ru-(C[triple bond]C)2-R] (R = H, SiMe3) in the presence of [FeCp2][PF6] or HOTf, and C7 or C9 complexes trans-[Cl(dppe)2Ru-(C[triple bond]C)n-C(CH3)=C(R1)-C(R2)=C=C=Ru(dppe)2Cl][X] (n = 1, 2; R1 = Me, Ph, R2 = H, Me; X = BF4, OTf) are formed in the presence of a polyyne trans-[Cl(dppe)2Ru-(C[triple bond]C)n-R] (n = 2, 3; R = H, SiMe3) with a ruthenium allenylidene trans-[Cl(dppe)2Ru=C=C=C(CH2R1)R2][X]. These reactions proceed under mild conditions and involve cumulenic intermediates [M+]=(C=)nCHR (n = 3, 5), including a hexapentaenylidene. A combination of chemical, electrochemical, spectroscopic (UV-vis, IR, NIR, EPR), and theoretical (DFT) techniques is used to show the influence of the nature and conformation of the bridge on the properties of the complexes and to give a picture of the electron delocalization in the reduced and oxidized states. These studies demonstrate that the C7 bridging ligand spanning the metal centers by almost 12 angstroms is implicated in both redox processes and serves as a molecular wire to convey the unpaired electron with no tendency for spin localization on one of the halves of the molecules. The reactivity of the C7 complexes toward protonation and deprotonation led to original bis(acetylides), vinylidene-allenylidene, or carbyne-vinylidene species such as trans-[Cl(dppe)2Ru[triple bond]C-CH=C(CH3)-CH=C(CH3)-HC=C=Ru(dppe)2Cl][BF4]3.  相似文献   

2.
Treatment of [Ru3(CO)12] with the chiral aminooxazolines (+)-2-amino-(4R)-phenyl-2-oxazoline (H2amphox), (+)-2-amino-(4R,5S)-indanyl-2-oxazoline (H2aminox) and (+)-2-(2-anilinyl)-(4R,5S)-indanyl-2-oxazoline (H2aninox) in THF at reflux temperature, affords the complexes [Ru3(mu-H)(mu3-kappa2-Hox-N,N)(CO)9] (H2ox = H2amphox, 1; H2aminox, 2) and [Ru3(mu-H)(mu-kappa2-Haninox-N,N)(CO)9] (3). In all cases, the activation of an N-H bond has occurred and the resulting amido fragment spans an edge of the metal triangle, while the N atom of the oxazoline ring is attached to the remaining metal atom (as in 1 and 2), or to one of the metal atoms of the bridged edge (as in 3). The use of 1-3 as catalyst precursors in the asymmetric hydrogen-transfer reduction of acetophenone and in the asymmetric cycloaddition of cyclopentadiene and acroleine is reported.  相似文献   

3.
Two-electron reduction of penta(organo)[60]fullerenes C(60)Ar(5)H (Ar = Ph and biphenyl) by potassium/mercury amalgam afforded potassium complexes of the corresponding open-shell radical dianions [K+(thf)n]2[C60Ar5(2-.)]. These compounds were characterized by UV-visible-near-IR and electron spin resonance spectroscopy in solution. Anaerobic crystallization of [K+(thf)n]2[C60(biphenyl)(5)(2-.)] that exists largely as a monomer in solution gave black crystals of its dimer [K+(thf)3]4[(biphenyl)5C60-C60(biphenyl)5(4-)], in which the two fullerene units are connected by a C-C single bond [1.577(11) A] as determined by X-ray diffraction. Three-electron reduction of C60Ar5H with metallic potassium gave a black-green trianion [K+(thf)n]3[C60Ar5(3-)]. The reaction of the trianion with an alkyl halide RBr (R = PhCH(2) and Ph(2)CH) regioselectively afforded a hepta-organofullerene C60Ar5R2H, from which a potassium complex [K+(thf)n][C60(biphenyl)5(CH2Ph)(2)(-)] and a palladium complex Pd[C60(biphenyl)5(CH2Ph)2](pi-methallyl) as well as octa-organofullerene compounds C60(biphenyl)5(CH2Ph)3H2 and Ru[C60(biphenyl)5(C2Ph)3H]Cp were synthesized. These compounds possess a dibenzo-fused corannulene pi-electron conjugated system and are luminescent.  相似文献   

4.
Compact, rigid, five-legged fullerene derivatives C60R5Me and M(C60R5)Cp (M = Fe and Ru; R = C6H4COOH, C6H4C6H4COOH, and CH2COOH) were synthesized and arrayed on an indium-tin oxide (ITO) surface. These devices exhibit a respectable quantum yield with photocurrent generation up to 18%, and, more importantly, the direction of the photocurrent can be changed not only by the molecular structure itself but also by changing the geometric configuration of the photoactive acceptor (fullerene) and donor (metal atom) on the ITO surface.  相似文献   

5.
Simple silylamine elimination reactions of calix[4]-pyrrole [R(2)C(C(4)H(2)NH)](4) (R = Me (1), {-(CH(2))(5)-}(0.5) (2)) with 2 equiv. of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) (Ln = Nd, Sm, Dy) in reflux toluene, afforded the novel dinuclear alkali metal-free trivalent lanthanide amido complexes (η(5):η(1):η(5):η(1)-R(8)-calix[4]-pyrrolyl){LnN(SiMe(3))(2)}(2) (R = Me, Ln = Nd (3), Sm (4), Dy (5); R = {-(CH(2))(5)-}(0.5), Ln = Nd (6), Sm(7)). The complexes were fully characterized by elemental analyses, spectroscopic analyses and single-crystal X-ray analyses. X-ray diffraction studies showed that each lanthanide metal was supported by bispyrrolyl anions in an η(5) fashion and along with three nitrogen atoms from N(SiMe(3))(2) and two other pyrroyl rings in η(1) modes formed the novel bent-sandwiched lanthanide amido bridged trivalent lanthanide amido complexes, similar to ansa-cyclopentadienyl ligand-supported lanthanide amides with respect to each metal center. The catalytic activities of these organolanthanide complexes as single component l-lactide polymerization catalysts were studied.  相似文献   

6.
The synthesis and spectroscopic properties of trans-[Cl(16-TMC)Ru[double bond]C[double bond]CHR]PF(6) (16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, R = C(6)H(4)X-4, X = H (1), Cl (2), Me (3), OMe (4); R = CHPh(2) (5)), trans-[Cl(16-TMC)Ru[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (X = H (6), Cl (7), Me (8), OMe (9)), and trans-[Cl(dppm)(2)M[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (M = Ru, X = H (10), Cl (11), Me (12); M = Os, X = H (13), Cl (14), Me (15)) are described. The crystal structures of 1, 5, 6, and 8 show that the Ru-C(alpha) and C(alpha)-C(beta) distances of the allenylidene complexes fall between those of the vinylidene and acetylide relatives. Two reversible redox couples are observed by cyclic voltammetry for 6-9, with E(1/2) values ranging from -1.19 to -1.42 and 0.49 to 0.70 V vs Cp(2)Fe(+/0), and they are both 0.2-0.3 and 0.1-0.2 V more reducing than those for 10-12 and 13-15, respectively. The UV-vis spectra of the vinylidene complexes 1-4 are dominated by intense high-energy bands at lambda(max) < or = 310 nm (epsilon(max) > or = 10(4) dm(3) mol(-1) cm(-1)), while weak absorptions at lambda(max) > or = 400 nm (epsilon(max) < or = 10(2) dm(3) mol(-1) cm(-1)) are tentatively assigned to d-d transitions. The resonance Raman spectrum of 5 contains a nominal nu(C[double bond]C) stretch mode of the vinylidene ligand at 1629 cm(-1). The electronic absorption spectra of the allenylidene complexes 6-9 exhibit an intense absorption at lambda(max) = 479-513 nm (epsilon(max) = (2-3) x 10(4) dm(3) mol(-1) cm(-1)). Similar electronic absorption bands have been found for 10-12, but the lowest energy dipole-allowed transition is blue-shifted by 1530-1830 cm(-1) for the Os analogues 13-15. Ab initio calculations have been performed on the ground state of trans-[Cl(NH(3))(4)Ru[double bond]C[double bond]C[double bond]CPh(2)](+) at the MP2 level, and imply that the HOMO is not localized purely on the metal center or allenylidene ligand. The absorption band of 6 at lambda(max) = 479 nm has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nu(C[double bond]C[double bond]C) stretch mode accounts for ca. 50% of the total vibrational reorganization energy, indicating that this absorption band is strongly coupled to the allenylidene moiety. The excited-state reorganization of the allenylidene ligand is accompanied by rearrangement of the Ru[double bond]C and Ru[bond]N (of 16-TMC) fragments, which supports the existence of bonding interaction between the metal and C[double bond]C[double bond]C unit in the electronic excited state.  相似文献   

7.
A covalently‐linked salen–C60 (H2L) assembly binds a range of transition metal cations in close proximity to the fullerene cage to give complexes [M(L)] (M=Mn, Co, Ni, Cu, Zn, Pd), [MCl(L)] (M=Cr, Fe) and [V(O)L]. Attaching salen covalently to the C60 cage only marginally slows down metal binding at the salen functionality compared to metal binding to free salen. Coordination of metal cations to salen–C60 introduces to these fullerene derivatives strong absorption bands across the visible spectrum from 400 to 630 nm, the optical features of which are controlled by the nature of the transition metal. The redox properties of the metal–salen–C60 complexes are determined both by the fullerene and by the nature of the transition metal, enabling the generation of a wide range of fullerene‐containing charged species, some of which possess two or more unpaired electrons. The presence of the fullerene cage enhances the affinity of these complexes for carbon nanostructures, such as single‐, double‐ and multiwalled carbon nanotubes and graphitised carbon nanofibres, without detrimental effects on the catalytic activity of the metal centre, as demonstrated in styrene oxidation catalysed by [Cu(L)]. This approach shows promise for applications of salen–C60 complexes in heterogeneous catalysis.  相似文献   

8.
Potassium reduction of iron– and ruthenium–penta(organo)[60]fullerene complexes, [M(η5‐C60R5)(η5‐Cp)] ( 1 a : M=Fe, R=Ph; 1 b : M=Fe, R=Me; 1 c : M=Ru, R=Ph; 1 d : M=Ru, R=Me; Cp=C5H5) gave mono‐ and dianions of these complexes. Treatment of the dianion 1 a with α‐bromodiphenylmethane gave three different iron–hepta(organo)[60]fullerenes, [Fe{η5‐C60Ph5(CHPh2)2}(η5‐Cp)], as a mixture of regioisomers. All three compounds were fully characterized by physical methods, including X‐ray crystallography and electrochemical measurements. One of the three compounds contains a new hoop‐shaped condensed aromatic system.  相似文献   

9.
Using density functional theory within the generalized gradient approximation, I analyzed the electronic structure of a C(60)-ferrocene hybrid [= C(60) (*) FeCp] around HOMO in comparison with that of ferrocene, where C(60) (*) and Cp denote C(60)(CH(3))(5) and a cyclopentadienyl ring. HOMO-LUMO gap is significantly smaller than that of ferrocene because of the intervention of pi(C(60) (*)) states below LUMO. In addition, geometrical and electronic structures of N@C(60) (*) FeCp are also investigated. I find that there are two isomers with the energy difference of 0.13 eV. In one of the two, the encased nitrogen atom is located at the center of the fullerene cage. The Fe atom is eta(5)-coordinated to both Cp and R*, where R* is a five-membered ring of C(60) (*) cage. On the other hand, the atom is coordinated to R* with eta(4)-hapticity, and the nitrogen atom is bonded to a carbon atom of the R* ring in the other isomer. Upon the isomerization between the two isomers, there occurs a partial transfer of spin density between the nitrogen and Fe atoms as well as the creation and breaking of a C-N bond.  相似文献   

10.
We performed DFT calculations (BLYP general-gradient approximation in conjunction with a double numerical basis set) for the interaction of free porphine ligand and a number of its metal complexes with C60 molecule to analyze how the nature of a central metal ion influences the geometry and electronic characteristics (electrostatic potential and spin density distribution and highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) structure). We found that the presence of a central metal ion is crucial for a strong interaction. The energy of interaction between H2P and C60 is -0.3 kcal mol(-1) only, whereas the formation energies for the metal complexes vary from -27.3 kcal mol(-1) for MnClP.C60 to -45.8 kcal mol(-1) for MnP.C60. As a rule, the formation energy correlates with the separations between porphinate and fullerene molecules; the Mn and Fe complexes exhibit the closest approach of ca. 2.2 A between the metal ion and carbon atoms of C60. In most porphine-C60 complexes studied, the two closest contacts of central metal ion or H are those with carbon atoms of the (6,6) bond; VOP.C60 is the only exception, where the closest V...C contacts involve the (5,6) bond. The macrocycle geometry changes, and the magnitude of the effect depends on the central atom, being especially dramatic for Mn, MnCl, and Fe complexes. The shape of LUMOs in most complexes with C60 is not affected notably as compared to the LUMO of the isolated C60 molecule. In the case of Fe, the HOMO extends from the central atom to two opposite pyrrol rings. At the same time, the HOMO-LUMO gap energy decreases drastically in most cases, by ca. 20-30 kcal mol(-1). For electrostatic potential distribution, we systematically observed that the negative lobe contacting C60 shrinks, whereas the opposite one becomes notably bigger. In the case of paramagnetic complexes of VO, Mn, FeCl, Co, and Cu, spin density distribution was analyzed as well.  相似文献   

11.
在无氧非水介质中, 以(NH4)2MoS4, FeCl3和NaS2CNEt2为原料合成了簇合物[Mo2Fe2S4(S2CNEt2)5]·CH3CN。X射线单晶结构测定表明, 它具有[Mo2Fe2S4]^5^+类立方烷核心骨架。每个金属原子有一螯合基团S2CNEt2配位。第五个S2CNEt2基团在两个Mo原子间跨桥配位。XPS和Mossbauer谱的测定及M-S(M=Fe或Mo)键长比较表明, 簇合物中Fe原子的氧化态是不同的, 而两个Mo原子则具有相同的氧化态, 该簇合物为顺磁性物质, μm=4.27μs。此外, 还测定了它的红外光谱, 紫外-可见光谱和催化乙炔还原活性。  相似文献   

12.
Reactions between HC triple bond CC triple bond CSiMe3 and several ruthenium halide precursors have given the complexes Ru(C triple bond CC triple bond CSiMe3)(L2)Cp'[Cp'= Cp, L = CO (1), PPh3 (2); Cp' = Cp*, L2= dppe (3)]. Proto-desilylation of 2 and 3 have given unsubstituted buta-1,3-diyn-1-yl complexes Ru(C triple bond CC triple bond CH)(L2)Cp'[Cp'= Cp, L = PPh3 (5); Cp'= Cp*, L2 = dppe (6)]. Replacement of H in 5 or 6 with Au(PR3) groups was achieved in reactions with AuCl(PR3) in the presence of KN(SiMe3)2 to give Ru(C triple bond CC triple bond CAu(PR3)](L2)Cp'[Cp' = Cp, L = PPh3, R = Ph (7); Cp' = Cp*, L2= dppe, R = Ph (8), tol (9)]. The asymmetrically end-capped [Cp(Ph3P)2Ru]C triple bond CC triple bond C[Ru(dppe)Cp*] (10) was obtained from Ru(C triple bond CC triple bond CH)(dppe)Cp* and RuCl(PPh3)2Cp. Single-crystal X-ray structural determinations of and are reported, with a comparative determination of the structure of Fe(C triple bond CC triple bond CSiMe3)(dppe)Cp* (4), and those of a fifth polymorph of [Ru(PPh3)2Cp]2(mu-C triple bond CC triple bond C) (12), and [Ru(dppe)Cp]2(mu-C triple bond CC triple bond C) (13).  相似文献   

13.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

14.
田真宁  许旋 《物理化学学报》2008,24(8):1482-1486
对PPh2py配合物[M(CO)3(PPh2py)2](M=Fe, Ru)的三种构型的异构体1-6进行了研究. 其中PPh2py以两个P原子与M配位形成HH构型1(Fe)和4(Ru), 以一个P和一个N原子与M配位形成HT构型2(Fe)和5(Ru), 以两个N原子与M配位形成HH’构型3(Fe)和6(Ru). 结果表明, (1) PPh2py中P原子对HOMO轨道的贡献最大, PPh2py作为电子给体时易以P原子与金属原子结合. (2)从分子能量和相互作用能数据表明, 配合物中HH构型最稳定, HH'构型最不稳定, 这与合成产物为HH构型的结果一致. (3) 键长和Wiberg键级均表明P—M键比N—M键结合力强. P、M原子间存在σ键, 而N、Fe原子间仅存在nN→n*M或nN→σ*M-P的电荷转移作用. (4) HH构型中M对HOMO的贡献最大, PPh2py向M的电荷转移最强, 使M的负电荷最大, 故HH构型最易作为电子给体以M原子与第二个金属配位形成双核配合物.  相似文献   

15.
New insights into the structural, electronic and catalytic properties of Fe complexes are provided by a density functional theory study of model as well as real [Fe(II)(H)(2)(diphosphine)(diamine)] systems. Calculations conducted using several different functionals on the trans- and cis-isomers of [Fe(II)(H)(2)(S-xylbinap)(S,S-dpen)] complexes show that, as with the [Ru(II)(H)(2)(diphosphine)(diamine)] complexes, the trans-[Fe(II)(H)(2)(diphosphine)(diamine)] complex is the more stable isomer. Analysis of the spin states of the trans-[Fe(II)(H)(2)(diphosphine)(diamine)] complexes also shows that the singlet state is significantly more stable than the triplet and the quintet, as with the [Ru(II)(H)(2)(diphosphine)(diamine)] complexes. Calculations of the catalytic cycle for the hydrogenation of ketones using two model trans-[M(II)(H)(2)(PH(3))(2)(en)] catalysts, where M = Ru and Fe, show that the mechanism of reaction as well as the activation energies are very similar, in particular: (i) the ketone/alcohol hydrogen transfer reaction occurs through the metal-ligand bifunctional mechanism, with energy barriers of 3.4 and 3.2 kcal mol(-1) for the Ru- and Fe-catalysed reactions, respectively; (ii) the heterolytic splitting of H(2) across the M[partial double bond, bottom dashed]N bond for the regeneration of the Ru and Fe catalysts has an activation barrier of 13.8 and 12.8 kcal mol(-1), respectively, and is expected to be the rate determining step for both catalytic systems. The reduction of acetophenone by trans-[M(II)(H)(2)(S-xylbinap)(S,S-dpen)] complexes along two competitive reaction pathways, shows that the intermediates for the Fe catalytic system are similar to those responsible for the high enantioselectivity of (R)-alcohol in those proposed trans-[Ru(II)(H)(2)(S-xylbinap)(S,S-dpen)] catalysed acetophenone hydrogenation reaction. Thus the high enantiomeric excess in the hydrogenation of acetophenone could, in principle, be achieved using Fe catalysts.  相似文献   

16.
The treatment of [Ru3(CO)12] with 6,6'-dimethyl-2,2'-bipyridine (Me2bipy) or 2,9-dimethyl-1,10-phenanthroline (Me2phen) in THF at reflux temperature gives the trinuclear dihydride complexes [Ru3(mu-H)2(mu3-L1)(CO)8] (L1 = HCbipyMe 1 a, HCphenMe 1 b), which result from the activation of two C-H bonds of a methyl group. The hexa-, hepta-, and pentanuclear derivatives [Ru6(mu3-H)(mu5-L2)(mu-CO)3(CO)13] (L2 = CbipyMe 2 a, CphenMe 2 b), [Ru7(mu3-H)(mu5-L2)(mu-CO)2(CO)16] (L2 = CbipyMe 3 a, CphenMe 3 b), and [Ru5(mu-H)(mu5-C)(mu-L3)(CO)13] (L3 = bipyMe 4 a, phenMe 4 b) can also be obtained by treating 1 a and 1 b with [Ru3(CO)12]. Compounds 2 a and 2 b have a basal edge-bridged square-pyramidal metallic skeleton with a carbyne-type C atom capping the four Ru atoms of the pyramid base. The structures of 3 a and 3 b are similar to those of 2 a and 2 b, respectively, but an additional Ru atom now caps a triangular face of the square-pyramidal fragment of the metallic skeleton. The most interesting feature of 2 a, 2 b, 3 a, and 3 b is that their carbyne-type C atoms were originally bound to three hydrogen atoms in Me2bipy or Me2phen and, therefore, they arise from the unprecedented activation of all three C-H bonds of C-bound methyl groups. The pentanuclear compounds 4 a and 4 b contain a carbide ligand surrounded by five Ru atoms in a distorted trigonal-bipyramidal environment. They are the products of a series of processes that includes the activation of all bonds (three C-H and one C-C) of organic methyl groups, and are the first examples of complexes having carbide ligands that arise from C-bonded methyl groups. The alkenyl derivatives [Ru5(mu5-C)(mu-p-MeC6H4CHCHphenMe)(CO)13] (5 b), [Ru5(mu-H)(mu5-C)(mu-p-MeC6H4CHCHphenMe)(p-tolC2)(CO)12] (6 b), and [Ru5(mu-H)(mu5-C)(mu-PhCHCHphenMe)(PhC2)(CO)12] (7 b) have been obtained by treating 4 b with p-tolyl- and phenylacetylene, respectively. Their heterocyclic ligands contain an alkenyl fragment in the position that was originally occupied by a methyl group. Therefore, these complexes are the result of the formal substitution of an alkenyl group for a methyl group of 2,9-dimethyl-1,10- phenanthroline.  相似文献   

17.
The synthesis and characterisation of the first neutral cerium dialkyl dithiocarbamate complexes, using a novel oxidative displacement of the amido ligands of [Ce[N(SiMe3)2]3] by tetraalkylthiuram disulfides [R2NC(S)S]2(R = Me, Et) in thf solution, are reported. In the absence of other donors, the complexes [Ce(kappa2-S2CNMe2)3(thf)2] and Ce(kappa2-S2CNEt2)3) 3 were obtained. The addition of a polypyridyl ligand allowed easy access to a range of complexes of general formula [Ce(kappa2-S2CNR2)3(L[intersection]L)][R = Me and L([intersection])L = 2,2'-bipy (4), or 4,7-diphenyl-1,10-phenanthroline (6); or R = Et and L[intersection]L = 2,2'-bipy (5)]. Brief exposure of the Ce(III) dithiocarbamate to oxygen gas afforded in high yield the diamagnetic, crystalline Ce(IV) dithiocarbamate [Ce(kappa2-S2CNEt2)4)] 7. The neodymium (8) and terbium (10) complexes, isoleptic with 2, were prepared from the appropriate 4f metal (Ln) bis(trimethylsilyl)amide [Ln[pN(SiMe3)2]3][Ln = Nd or Tb (9)] and [Me2NC(S)S]2. The structures of the crystalline complexes, 2, 4, 6, 7, 9 and 10 have been determined by X-ray crystallography. Some evidence has been obtained for the formation of the cerium(IV) complex Ce[N(SiMe3)2]2(kappa2-S2CNMe2)2. The cerium(IV) complex 7 has the metal coordinated to eight sulfur atoms of four planar chelating S2CNC2 moities and its geometry is intermediate between dodecahedral and square prismatic; the mean Ce-S bond length of 2.803 A in 7 compares with the 2.950 A in the Ce(III) complex 2.  相似文献   

18.
19.
The equilibrium geometries and bond dissociation energies of 16VE and 18VE complexes of ruthenium and iron with a naked carbon ligand are reported using density functional theory at the BP86/TZ2P level. Bond energies were also calculated at CCSD(T) using TZ2P quality basis sets. The calculations of [Cl2(PMe3)2Ru(C)] (1Ru), [Cl2(PMe3)2Fe(C)] (1Fe), [(CO)2(PMe3)2Ru(C)] (2Ru), [(CO)2(PMe3)2Fe(C)] (2Fe), [(CO)4Ru(C)] (3Ru), and [(CO)4Fe(C)] (3Fe) show that 1Ru has a very strong Ru-C bond which is stronger than the Fe-C bond in 1Fe. The metal-carbon bonds in the 18VE complexes 2Ru-3Fe are weaker than those in the 16VE species. Calculations of the related carbonyl complexes [(PMe3)2Cl2Ru(CO)] (4Ru), [(PMe3)2Cl2Fe(CO)] (4Fe), [(PMe3)2Ru(CO)3] (5Ru), [(PMe3)2Fe(CO)3] (5Fe), [Ru(CO)5] (6Ru), and [Fe(CO)5] (6Fe) show that the metal-CO bonds are much weaker than the metal-C bonds. The 18VE iron complexes have a larger BDE than the 18VE ruthenium complexes, while the opposite trend is calculated for the 16VE compounds. Charge and energy decomposition analyses (EDA) have been carried out for the calculated compounds. The Ru-C and Fe-C bonds in 1Ru and 1Fe are best described in terms of two electron-sharing bonds with sigma and pi symmetry and one donor-acceptor pi bond. The bonding situation in the 18 VE complexes 2Ru-3Fe is better described in terms of closed shell donor-acceptor interactions in accordance with the Dewar-Chatt-Duncanson model. The bonding analysis clearly shows that the 16VE carbon complexes 1Ru and 1Fe are much more strongly stabilized by metal-C sigma interactions than the 18VE complexes which is probably the reason why the substituted homologue of 1Ru could become isolated. The EDA calculations show that the nature of the TM-C and TM-CO binding interactions resembles each other. The absolute values for the energy terms which contribute to Delta(Eint) are much larger for the carbon complexes than for the carbonyl complexes, but the relative strengths of the energy terms are not very different from each other. The pi bonding contribution to the orbital interactions in the carbon complexes is always stronger than sigma bonding. There is no particular bonding component which is responsible for the reversal of the relative bond dissociation energies of the Ru and Fe complexes when one goes from the 16VE complexes to the 18VE species. That the 18 VE compounds have longer and weaker TM-C and TM-CO bonds than the respective 16 VE compounds holds for all complexes. This is because the LUMO in the 16 VE species is a sigma-antibonding orbital which becomes occupied in the 18 VE species.  相似文献   

20.
Two novel alkynyl-bridged symmetric bis-tridentate ligands 1,2-bis(1'-[4'-(2,2':6',2'-terpyridinyl)]ferrocenyl)ethyne (; tpy-Fc-C[triple bond, length as m-dash]C-Fc-tpy; Fc = ferrocenyl; tpy = terpyridyl) and 1,4-bis(1'-[4'-(2,2':6',2'-terpyridinyl)]ferrocenyl)-1,3-butadiyne (; tpy-Fc-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-Fc-tpy) and their Ru(2+) complexes and have been synthesized and characterized by cyclic voltammetry, UV-vis and luminescence spectroscopy, and in the case of by single-crystal X-ray diffraction. Cyclic voltammograms of both compounds, and , display two severely overlapping ferrocene-based oxidative peaks with only one reductive peak. The redox behavior of and is dominated by the Ru(2+)/Ru(3+) redox couple (E(1/2) from 1.33 to 1.34 V), the Fe(2+)/Fe(3+) redox couples (E(1/2) from 0.46 to 0.80 V), and the tpy/tpy(-)/tpy(2-) redox couples (E(1/2) from -1.19 to -1.48 V). The UV-vis spectra of and show absorption bands assigned to the (1)[(d(π)(Fe))(6)] → (1)[(d(π)(Fe))(5)(π*(tpy)(Ru))(1)] MMLCT transition at ~555 nm. Complexes and are luminescent in H(2)O-CH(3)CN (4?:?1, v/v) solution at room temperature, and exhibits the strongest luminescence intensity (λ(max)(em): 710 nm, Φ(em): 2.28 × 10(-4), τ: 358 ns) relative to analogous ferrocene-based bis(terpyridine) Ru(ii) complexes reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号