首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

2.
A new grafted polymer has been developed by the chemical modification of Amberlite XAD-16 (AXAD-16) polymeric matrix with [(2-dihydroxyarsinoylphenylamino)methyl]phosphonic acid (AXAD-16-AsP). The modified polymer was characterized by a combination of 13C CPMAS and 31P solid-state NMR, Fourier transform-NIR-FIR-Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis (TGA). The distribution studies for the extraction of U(VI), Th(IV), and La(III) from acidic solutions were performed using an AXAD-16-AsP-packed chromatographic column. The influences of various physiochemical parameters on analyte recovery were optimized by both static and dynamic methods. Accordingly, even under high acidities (>4 M), good distribution ratio (D) values (102–104) were achieved for all the analytes. Metal ion desorption was effective using 1 mol L–1 (NH4)2CO3. From kinetic studies, a time duration of <15 min was sufficient for complete metal ion saturation of the resin phase. The maximum metal sorption capacities were found to be 0.25, 0.13, and 1.49 mmol g–1 for U(VI); 0.47, 0.39, and 1.40 mmol g–1 for Th(IV); and 1.44, 1.48, and 1.12 mmol g–1 for La(III), in the presence of 2 mol L–1 HNO3, 2 mol L–1 HCl, and under pH conditions, respectively. The analyte selectivity of the grafted polymer was tested in terms of interfering species tolerance studies. The system showed an enrichment factor of 365, 300, and 270 for U(VI), Th(IV), and La(III), and the limit of analyte detection was in the range of 18–23 ng mL–1. The practical applicability of the polymer was tested with synthetic nuclear spent fuel and seawater mixtures, natural water, and geological samples. The RSD of the total analytical procedure was within 4.9%, thus confirming the reliability of the developed method.  相似文献   

3.
Numerous commonly used analytical methods allow only determination of a total amount of selenium in a given sample. Electroanalytical methods as well as those based on hydride generation or on formation of piazselenol allow only determination of Se(IV). To determine Se(VI) by these procedures, present alone or in mixtures with Se(IV), it is first necessary to convert Se(VI) to Se(IV). Such conversion is effective in the presence of excess of halides in acidic media or by photoreduction. In the often used conversion of Se(VI) in the presence of chlorides or less frequently of that of bromides, it has been assumed that the halide ion acts as a reducing agent. Kinetic studies of conversion of Se(VI) in acidic solutions containing an excess of bromide ions indicated that the rate determining first step of the reaction with Se(VI) is a nucleophilic substitution of the OH2+ group in the protonated form of H2SeO4 by bromide ions. For the overall reaction with rate −d[Se(VI)]/dt = k1[H+][Br]1.15[Se(IV)] the rate constant 1 × 10−3 L2 mol−2 s−1 was found. The following formation of Se(IV) from the bromo derivative is a fast reaction probably resulting in elimination of HBrO.  相似文献   

4.
To understand the fate of 79Se in a repository-like environment, the interactions between iron canister surface with dissolved selenite (SeO3 2−) and selenate (SeO4 2−) in anaerobic solutions have been investigated. Se(IV) immobilization on iron surface was observed to be about 100 times faster than that of Se(VI) at same conditions. An iron surface coated with a FeCO3 layer corrosion product is more reactive than a polished iron to immobilize Se(IV) and Se(VI). The reacted iron surfaces were analysed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Raman spectrometry and micro-X-ray Absorption Spectroscopy (XAS). The result show that Se(IV) and Se(VI) were reduced and precipitated. The dominating phase was found to be FeSe2.  相似文献   

5.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

6.
A novel method for the separation and preconcentration of Se(IV)/ Se(VI) with algae and determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The Se(VI) is extracted with algae from the solution containing Se(IV)/Se(VI) at pH 5.0, and the remaining Se(IV) is then preconcentrated pH 1.0. The detection limits (3σ, n = 11) of 0.16 μg L–1 for Se(IV) and 0.14 μg L–1 for Se(VI) are obtained using 40 mL of solution. At the 2.0 μg L–1 level the relative standard deviation is 2.6% for Se(IV) and 2.3% for Se(VI). The method has been applied to the determination of Se(IV)/Se(VI) in sediment and water samples. Analytical recoveries of Se(IV) and Se(VI) added to samples are ?97 ± 5% and 102 ± 6% (95% confidence), respectively. Received: 10 February 1999 / Revised: 21 June 1999 / /Accepted: 22 June 1999  相似文献   

7.
Determination of Se(IV) and Se(VI) in high saline media was investigated by cathodic stripping voltammetry (CSV). The voltammetric method was applied to assay selenium in seawater, hydrothermal and hemodialysis fluids. The influence of ionic strength on selenium determination is discussed. The CSV method was based on the co-electrodeposition of Se(IV) with Cu(II) ions and Se(VI) determined by difference after sample UV-irradiation for photolytic selenium reduction. UV-irradiation was also used as sample pre-treatment for organic matter decomposition. Detection limit of 0.030 μg L−1 (240 s deposition time) and relative standard deviation (RSD) of 6.19% (n = 5) for 5.0 μg L−1 of Se(IV) were calculated. Linear calibration range for selenium was observed from 1.0 to 100.0 μg L−1. Concerning the pre-treatment step, best results were obtained by using 60 min UV-irradiation interval in H2O2/HCl medium. Se(VI) was reduced to the Se(IV) electroactive species with recoveries between 91.7% and 112.9%. Interferents were also investigated.  相似文献   

8.
The uptake behavior of U(VI), Pu(IV), Am(III) and a few long-lived fission products from nitric acid media by bis(2-ethylhexyl) sulfoxide (BESO) adsorbed on Chromosorb has been studied U(VI), Pu(IV) and Zr(IV) are taken up appreciably as compared to trivalent actinides/lanthanides including some coexisting fission product contaminants which are weakly sorbed on the column. Chromosorb could be loaded with (1.12±0.03) g of BESO per g of the support. Maximum sorption is observed around 4–5 mol·dm–3 HNO3 for both U(VI) and Pu(IV), which are sorbed as their disolvates. The elution of (U(VI) and Pu(IV) from the metal loaded sorbent has also been optimized. Desorption of U(VI) is easily accomplished with dilute nitric acid (ca. 0.01 mol·dm–3)while Pu(IV) is reductively stripped with 0.1 mol·dm–3 NH2OH·HCl. Effective sequential separation of U(VI), Pu(IV) and Am(III) from their several admixtures could be readily achieved from real medium and low level active acidic process raffinates.  相似文献   

9.
Determination of inorganic oxyanions of As and Se by HPLC-ICPMS   总被引:1,自引:0,他引:1  
Sathrugnan K  Hirata S 《Talanta》2004,64(1):237-243
A liquid chromatographic separation of inorganic oxyanions of As (As(V) and As(III)) and Se (Se(VI) and Se(IV)) using mixed ion-pairing reagents followed by ICPMS detection is described. The separation was accomplished in less than 4 min on Capcell C18 RP column using mixed ion-pairing modifier containing 5 mM of butane sulfonic acid (BSA), 2 mM malonic acid, 0.30 mM hexane sulfonic acid (HSA) and 0.5% methanol of pH 2.5. All four species were resolved with retention times of 2.4, 2.6, 3.0, and 3.1 min for Se(VI), As(V), As(III), and Se(IV), respectively. The detection limits were less than 0.08 and 0.77 μg l−1 for arsenic and selenium species, respectively. The relative standard deviation of the proposed method for arsenic (at 2.5 μg l−1) and selenium (at 10 μg l−1) was less than 3.7 and 4.8%, respectively. The technique was used to determine inorganic oxyanions of As and Se in water samples (tap, well, and river) and extracts of coal fly ash and sediment. Low power microwave digestion was employed for extraction from fly ash and sediment samples.  相似文献   

10.
A novel method for the separation and preconcentration of Se(IV)/ Se(VI) with algae and determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. The Se(VI) is extracted with algae from the solution containing Se(IV)/Se(VI) at pH 5.0, and the remaining Se(IV) is then preconcentrated pH 1.0. The detection limits (3σ, n = 11) of 0.16 μg L–1 for Se(IV) and 0.14 μg L–1 for Se(VI) are obtained using 40 mL of solution. At the 2.0 μg L–1 level the relative standard deviation is 2.6% for Se(IV) and 2.3% for Se(VI). The method has been applied to the determination of Se(IV)/Se(VI) in sediment and water samples. Analytical recoveries of Se(IV) and Se(VI) added to samples are ¶97 ± 5% and 102 ± 6% (95% confidence), respectively.  相似文献   

11.
Summary Using 75Se as a radiotracer, the preatomization behaviour of selenium in the graphite furnace was studied. The selenium forms investigated included Se(-II)-methionine, selenite, and selenate in a 0.2% HNO3 solution, and in a 0.2% HNO3 solution containing 1% NaCl. The effect of nickel nitrate and of the mixture of palladium/magnesium nitrates as matrix modifiers and of boron nitride coating of the graphite tube on the behaviour of selenium was investigated. The best stabilization effect for all oxidation states of selenium in the conventional graphite tube was achieved by using the mixture Pd/Mg. A considerable degree of modifier-free stabilization of selenuium could be achieved in boron nitride coated tubes. After the conversion of Se(IV) to a volatile piaselenol, a quantitative preatomization separation of Se(IV) from Se(VI) in the boron nitride coated tube was possible. However problems with these newtype tubes still to be solved include the need to increase the thermal stability of the coating.  相似文献   

12.
《中国化学快报》2022,33(7):3444-3450
A simple and convenient method has been developed for the pre-concentration and separation of inorganic selenium species from environmental water samples using anion exchange chromatographic column combined with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) measurement. 75Se(IV) and 75Se(VI) were prepared and used as tracers during the experiments. The volatility of selenium during solution evaporation was investigated to establish a reliable water samples pretreatment procedure. The parameters which affect the uptake of Se(IV) and Se(VI) on Dowex1 × 8 resin was optimized and the procedure for Se(IV) and Se(VI) separation was proposed. Both Se(IV) and Se(VI) are retained on the column in natural or alkaline solution with high distribution coefficient. The successive gradient elution of pre-concentrated species of selenium with HNO3 solution allows to differentiate between them. Se(IV) and Se(VI) finally were eluted with 0.05 mol/L HNO3 and 5.0 mol/L HNO3, respectively. The proposed method has been successfully verified using the certified reference materials (CRMs) of real water samples, and spiked recoveries for real samples were 98%-104% with 5% relative standard deviations (RSDs). The developed procedure is proved to be reliable and can be used for the rapid determination of selenium species in environmental water samples.  相似文献   

13.
An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l−1 HCl for Se(IV) and 12 mol l−1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0–120 and 0–100 μg l−1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l−1 for Se(IV) and 1.5 μg l−1 for Se(VI). The precision (about 2.0–2.5% RSD) and recoveries (96–98% for Se(IV) and 94–98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.  相似文献   

14.
Chelex-100, in the anionic form has been studied for its ability to perform selective separation and concentration of some metal ions of nuclear importance from mineral acid solutions. The sorption behavior of Zr(IV)–Nb(V), Mo(VI), Tc(VII), Te(IV) and U(VI) from solutions of hydrochloric and sulphuric acids on Chelex-100 has been studied under static and dynamic conditions. Mo(VI) and Tc(VII) have been concentrated on the resin from hydrochloric or sulphuric acid solutions at low acidities probably, as the anions MoO 4 2– and TcO 4 , respectively. Te(IV) has been isolated from hydrochloric acid solutions of normalities 6 in the form of the anionic chloro complex TeCl 6 2– . Optimum conditions for elution and separation of Mo(VI), Tc(VII), Te(IV) and U(VI) were recommended.  相似文献   

15.
The extractive properties of tri-isoamyl-phosphate (TAP), an indigenously prepared extractant, and the loading capacity of extraction solvent containing TAP for U(VI) and Pu(IV) ions in nitric solution have been investigated. The dependence of the distribution ratio on the concentration of nitric acid showed that TAP has an ability to extract these actinides, while the fission product contaminants are poorly extracted. The distribution data revealed a quantitative extraction of both U(VI) and Pu(IV) from moderate nitric acidities in the range 2–7 mol · dm–3. Slope analysis proved predominant formation of the disolvated organic phase complex of the type UO2(NO3). 2TAP and Pu(NO3)4·2TAP with U(VI) and PU(IV), respectively. On the contrary, the extraction of fission product contaminants such as144Ce,137Cs,9Nb.,147Pr,106Ru,95Zr was almost negligible even at very high nitric acid concentrations in the aqueous phase indicating its potential application in actinide partitioning. The recovery of TAP from the loaded actinides could be easily accomplished by using a dilute sodium carbonate solution or acidified distiled water (0.01 mol · dm–3 HNO3) as the strippant for U(VI) and using uranous nitrate or ferrous sulphamate as that for Pu(IV). Radiation stability of TAP was adequate for most of the process applications.  相似文献   

16.
Behaviour of Pu(IV) and Pu(VI) in basic media has been investigated by studying their stabilities and quantitative determination by spectrophotometry. Beer's law was found to be obeyed in the range of 1·10–3 to 5·10–3 M Pu(IV) at 485 nm peak with a molar absorption coefficient of 95M–1· cm–1 in sodium carbonate medium. In case of Pu(VI), in the same medium Beer's law was obeyed in the concentration range of 2·10–3 to 1·10–2M at 550 nm with a molar absorption coefficient of 50M–1·cm–1. Distribution ratios of Pu(IV) and Pu(VI) for their sorption on Al2O3 and Amberlyst A-26 (MP) resin from bicarbonate and carbonate media have been determined. High distribution ratios obtained indicate the feasibility of decreasing the plutonium content of basic carbonate streams in reprocessing. 10% breakthrough capacities for Pu(IV) and Pu(VI) with these exchangers during column operations have also been determined.  相似文献   

17.
The use of solid-phase microextraction (SPME) with gas chromatography coupled to microwave-induced plasma atomic-emission detection (GC–MIP-AED) is described for selenite [Se(IV)] speciation. Aqueous standards were derivatised with sodium tetraethyl- or tetrapropylborate and extracted by SPME. Headspace extraction of the ethyl and propyl derivatives was studied. Relevant experimental conditions were optimised, including conditions for derivatisation and extraction and those of gas chromatographic analysis. The limits of detection achieved for headspace sampling of derivatised Se(IV) were in the low ng mL–1 range for both ethylation and propylation. When the method was applied to analysis of selenite in selenised yeast reference material results were in good agreement with the indicated values.  相似文献   

18.
Xiong C  He M  Hu B 《Talanta》2008,76(4):772-779
A new, simple, and selective method has been presented for the separation and preconcentration of inorganic arsenic (As(III)/As(V)) and selenium (Se(IV)/Se(VI)) species by a microcolumn on-line coupled with inductively coupled plasma-optical emission spectrometry (ICP-OES). Trace amounts of As(V) and Se(VI) species were separated and preconcentrated from total As and Se at desired pH values by a conical microcolumn packed with cetyltrimethylammonium bromide (CTAB)-modified alkyl silica sorbent in the absence of chelating reagent. The species adsorbed by CTAB-modified alkyl silica sorbent were quantitatively desorbed with 0.10 ml of 1.0 mol l−1 HNO3. Total inorganic arsenic and selenium were similarly extracted after oxidation of As(III) and Se(IV) to As(V) and Se(VI) with KMnO4 (50.0 μmol l−1). The assay of As(III) and Se(IV) were based on subtracting As(V) and Se(VI) from total As and total Se, respectively. All parameters affecting the separation/preconcentration of As(V) and Se(VI) including pH, sample flow rate and volume, eluent solution and volume have been studied. With a sample volume of 3.0 ml, the sample throughput was 24 h−1 and the enrichment factors for As(V) and Se(VI) were 26.7 and 27.6, respectively. The limits of detection (LODs) were 0.15 μg l−1 for As(V) and 0.10 μg l−1 for Se(VI). The relative standard deviations (RSDs) for nine replicate determinations at 5.0 μg l−1 level of As(V) and Se(VI) were 4.0% and 3.6%, respectively. The calibration graphs of the method for As(V) and Se(VI) were linear in the range of 0.5–1000.0 μg l−1 with a correlation coefficient of 0.9936 and 0.9992, respectively. The developed method was successfully applied to the speciation analysis of inorganic arsenic and selenium in natural water samples with satisfactory results.  相似文献   

19.
Qingyang Liu 《Mikrochimica acta》2009,167(1-2):141-145
An on-line nano-TiO2 controlled volatilization system was developed for inorganic selenium speciation based on the irradiation of thiourea with ultraviolet light. It provides an effective hyphenation unit for atomic fluorescence spectrometry. The effects of several factors such as the acidity, the concentration of thiourea, the amounts of TiO2, the concentration of KBH4 and the flow rates of carrier gas were investigated. Under optimal conditions, the limit detections for Se(IV) and Se(VI) were 2.38 and 3.39 ng mL?1 (100?µL injection, 3 times of the baseline noise), respectively. The relative standard for deviations of 50 ng mL?1 Se(IV) and Se(VI) were 3.7% and 2.7%, respectively. The method has been applied for determination of inorganic selenium species in real samples and the recoveries were between 93% and 98%.  相似文献   

20.
A new chromatographic extraction method has been developed using Amberlite XAD-16 (AXAD-16) resin chemically modified with (3-hydroxyphosphinoyl-2-oxo-propyl)phosphonic acid dibenzyl ester (POPDE). The chemically modified polymer was characterized by 13C CPMAS and 31P solid-state NMR, Fourier Transform–NIR–FIR–Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis. Extraction studies performed for U(VI), Th(IV), and La(III) showed good distribution ratio (D) values of approximately 103, even under high acidities (1–4 M). Various physiochemical parameters that influence the quantitative metal ion extraction were optimized by static and dynamic methods. Data obtained from kinetic studies revealed that a time duration of 10 min was sufficient to achieve complete metal ion extraction. Maximum metal sorption capacity values under optimum pH conditions were found to be 1.38, 1.33, and 0.75 mmol g–1 for U(VI), Th(IV), and La(III), respectively. Interference studies performed in the presence of concentrated diverse ions and electrolyte species showed quantitative analyte recovery with lower limits of analyte detection being 10 and 20 ng cm–3 for U(VI) and both Th(IV) and La(III), respectively. Sample breakthrough studies performed on the extraction column showed an enrichment factor value of 330 for U(VI) and 270 for Th(IV) and La(III), respectively. Analyte desorption was effective using 15 cm3 of 1 M (NH4)2CO3 with >99.8% analyte recovery. The analytical applicability of the developed resin was tested with synthetic mixtures mimicking nuclear spent fuels, seawater compositions and real water and geological samples. The rsd values of the data obtained were within 5.2%, thereby reflecting the reliability of the developed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号