首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam   总被引:1,自引:0,他引:1  
Oxygenated derivatives of the monoterpene (+)-alpha-pinene are found in plant essential oils and used as fragrances and flavorings. (+)-alpha-Pinene is structurally related to (+)-camphor, the natural substrate of the heme monooxygenase cytochrome P450(cam) from Pseudomonas putida. The aim of the present work was to apply the current understanding of P450 substrate binding and catalysis to engineer P450(cam) for the selective oxidation of (+)-alpha-pinene. Consideration of the structures of (+)-camphor and (+)-alpha-pinene lead to active-site mutants containing combinations of the Y96F, F87A, F87L, F87W, and V247L mutations. All mutants showed greatly enhanced binding and rate of oxidation of (+)-alpha-pinene. Some mutants had tighter (+)-alpha-pinene binding than camphor binding by the wild-type. The most active was the Y96F/V247L mutant, with a (+)-alpha-pinene oxidation rate of 270 nmol (nmol of P450(cam))(-)(1) min(-)(1), which was 70% of the rate of camphor oxidation by wild-type P450(cam). Camphor is oxidized by wild-type P450(cam) exclusively to 5-exo-hydroxycamphor. If the gem dimethyl groups of (+)-alpha-pinene occupied similar positions to those found for camphor in the wild-type structure, (+)-cis-verbenol would be the dominant product. All P450(cam) enzymes studied gave (+)-cis-verbenol as the major product but with much reduced selectivity compared to camphor oxidation by the wild-type. (+)-Verbenone, (+)-myrtenol, and the (+)-alpha-pinene epoxides were among the minor products. The crystal structure of the Y96F/F87W/V247L mutant, the most selective of the P450(cam) mutants initially examined, was determined to provide further insight into P450(cam) substrate binding and catalysis. (+)-alpha-Pinene was bound in two orientations which were related by rotation of the molecule. One orientation was similar to that of camphor in the wild-type enzyme while the other was significantly different. Analysis of the enzyme/substrate contacts suggested rationalizations of the product distribution. In particular competition rather than cooperativity between the F87W and V247L mutations and substrate movement during catalysis were proposed to be major factors. The crystal structure lead to the introduction of the L244A mutation to increase the selectivity of pinene oxidation by further biasing the binding orientation toward that of camphor in the wild-type structure. The F87W/Y96F/L244A mutant gave 86% (+)-cis-verbenol and 5% (+)-verbenone. The Y96F/L244A/V247L mutant gave 55% (+)-cis-verbenol but interestingly also 32% (+)-verbenone, suggesting that it may be possible to engineer a P450(cam) mutant that could oxidize (+)-alpha-pinene directly to (+)-verbenone. Verbenol, verbenone, and myrtenol are naturally occurring plant fragrance and flavorings. The preparation of these compounds by selective enzymatic oxidation of (+)-alpha-pinene, which is readily available in large quantities, could have applications in synthesis. The results also show that the protein engineering of P450(cam) for high selectivity of substrate oxidation is more difficult than achieving high substrate turnover rates because of the subtle and dynamic nature of enzyme-substrate interactions.  相似文献   

2.
The self-sufficient cytochrome P450 BM-3 enzyme from Bacillus megaterium catalyzes subterminal hydroxylation of saturated long-chain fatty acids and structurally related compounds. Since the primary structure of P450 BM-3 is homologous to that of mammalian P450 type II, it represents an excellent model for this family of enzymes. During studies on the directed evolution of P450 BM-3 into a medium-chain fatty-acid hydroxylase, several mutants, in particular the triple mutant Phe87Val, Leu188Gln, Ala74Gly, were observed to hydroxylate indole, producing indigo and indirubin at a catalytic efficiency of 1365 M(-1)s(-1) (kcat=2.73 s(-1) and Km=2.0 mM). Both products were unequivocally characterized by NMR and MS analysis. Wild-type P450 BM-3 is incapable to hydroxylate indole. These results demonstrate that an enzyme can be engineered to catalyze the transformation of substrates with structures widely divergent from those of its native substrate.  相似文献   

3.
The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.  相似文献   

4.
Cytochrome P450 BM-3 from Bacillus megaterium was engineered for enantioselective epoxidation of simple terminal alkenes. Screening saturation mutagenesis libraries, in which mutations were introduced in the active site of an engineered P450, followed by recombination of beneficial mutations generated two P450 BM-3 variants that convert a range of terminal alkenes to either (R)- or (S)-epoxide (up to 83 % ee) with high catalytic turnovers (up to 1370) and high epoxidation selectivities (up to 95 %). A biocatalytic system using E. coli lysates containing P450 variants as the epoxidation catalysts and in vitro NADPH regeneration by the alcohol dehydrogenase from Thermoanaerobium brockii generates each of the epoxide enantiomers, without additional cofactor.  相似文献   

5.
Cytochrome P450 BM-3 from Bacillus megaterium was engineered using a combination of directed evolution and site-directed mutagenesis to hydroxylate linear alkanes regio- and enantioselectively using atmospheric dioxygen as an oxidant. BM-3 variant 9-10A-A328V hydroxylates octane at the 2-position to form S-2-octanol (40% ee). Another variant, 1-12G, also hydroxylates alkanes larger than hexane primarily at the 2-position but forms R-2-alcohols (40-55% ee). These biocatalysts are highly active (rates up to 400 min(-1)) and support thousands of product turnovers. The regio- and enantioselectivities are retained in whole-cell biotransformations with Escherichia coli, where the engineered P450s can be expressed at high levels and the cofactor is supplied endogenously.  相似文献   

6.
Substrate engineered, achiral carboxylic acid derivative was biohydroxylated with various mutants of cytochrome P450 BM-3 to give two out of the four possible diastereoisomers in high de and ee. The BM-3 mutants exhibit up to 9200 total turnovers for hydroxylation of the engineered substrate, which without the protecting group is not transformed by this enzyme.  相似文献   

7.
Structural and functional roles of the hydrogen bonding network that surrounds the heme-thiolate coordination of P450(cam) from Pseudomonas putida were investigated. A hydrogen bond between the side chain amide of Gln360 and the carbonyl oxygen of the axial Cys357 was removed in Q360L. The side chain hydrogen bond and the electrostatic interaction between the polypeptide amide proton of Gln360 and the sulfur atom of Cys357 were simultaneously removed in Q360P. The increased electron donation of the axial thiolate in Q360L and Q360P was evidenced by negative shifts of their reduction potentials by 45 and 70 mV, respectively. Together with the results on L358P in which the amide proton at position 358 was removed (Yoshioka, S., Takahashi, S., Ishimori, K., Morishima, I. J. Inorg. Biochem. 2000, 81, 141-151), we propose that the side chain hydrogen bond and the electrostatic interaction of the amide proton with the thiolate ligand cause approximately 45 and approximately 35 mV of positive shifts, respectively, of the redox potential of the heme in P450(cam). The resonance Raman spectra of the ferrous-CO form of the Q360 mutants showed a downshifted Fe-CO stretching mode at 482 approximately 483 cm(-)(1) compared with that of wild-type P450(cam) at 484 cm(-)(1). The Q360 mutants also showed the upshift by 4 approximately 5 cm(-)(1) of the Fe-NO stretching mode in the ferrous-NO form. These Raman results indicate the increase in the sigma-electron donation of the thiolate ligand in the reduced state of the Q360 mutants and were in contrast to the increased pi-back-donation of the thiolate in L358P having an upshifted Fe-CO stretching mode at 489 cm(-)(1). The catalytic activities of the Q360 mutants for the unnatural substrates were similar to those of the wild-type enzyme, indicating that the increased sigma-electron donation does not promote the O-O bond heterolysis in the Q360 mutants, although the increased pi-electron donation in L358P promoted the heterolysis of the O-O bond. We conclude that the functions of the proximal hydrogen bonding network in P450(cam) are to stabilize the heme-thiolate coordination, and to regulate the redox potential of the heme iron. Furthermore, we propose that the pi-electron donation, not the sigma-electron donation, of the thiolate ligand promotes the heterolysis of the O-O bond of dioxygen.  相似文献   

8.
Oxidations of 10-undecenoic acid by cytochrome P450(BM-3) and its Compound I transient were studied. The only product formed in Compound I oxidations was 10,11-epoxyundecanoic acid, whereas the enzyme under turnover conditions gave the epoxide and 9-hydroxy-10-undecenoic acid in a 10 : 90 ratio. Kinetic studies at 0 °C of oxidations by Compounds I formed by MCPBA oxidation and by a photo-oxidation pathway gave the same results, displaying saturation kinetics that yielded equilibrium binding constants and first-order oxidation rate constants that were experimentally indistinguishable. Oxidation of 10-undecenoic acid by Compound I from CYP119 generated by MCBPA oxidation also gave 10,11-epoxyundecanoic acid as the only product. CYP119 Compound I bound the substrate less strongly but reacted with a faster oxidation rate constant than P450(BM-3) Compound I. The kinetic parameters for oxidation of the substrate by P450(BM-3) under turnover conditions were similar to those of the Compound I transient even though the products differed.  相似文献   

9.
An efficient single-step purification protocol for recombinant cytochrome P450 BM-3 from Bacillus megaterium, expressed in E. coli, was developed. Functional crude protein was obtained by disintegrating induced E. coli DH5 alpha and removing cell debris by centrifugation. After investigating different anion-exchange matrices, elution salts and the elution procedures involving an AKTAexplorer system, adsorption of the crude extract from lysed E. coli to Toyopearl DEAE 650M anion exchanger, followed by a two-step elution using NaCl, proved sufficient to isolate almost pure protein without inactivation (up to 93% P450 BM-3 content) in yields that ranged between 79-86%. The purification method could be scaled up 1500-fold and higher without further optimization to a 6-1 production-scale column containing Toyopearl DEAE 650M anion exchanger.  相似文献   

10.
We recently reported conversion of cytochrome P450 BM-3, a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient alkane hydroxylase by directed evolution [Nat. Biotechnol. 2002, 20, 1135]. P450 BM-3 mutant 139-3 exhibited high activity towards a variety of fatty acid and alkane substrates, including C3-C8 alkanes. We report here that mutant 139-3 is also active on benzene, styrene, cyclohexene, 1-hexene, and propylene. Benzene is converted to phenol, while styrene is converted to styrene oxide. Propylene oxidation generates only propylene oxide, but cyclohexene oxidation produces a mixture of cyclohexene oxide (85%) and 2-cyclohexene-1-ol (15%), and 1-hexene is converted to the allylic hydroxylation product, 1-hexene-3-ol. Initial rates of NADPH oxidation for 139-3 in the presence of the substrates greatly (17- to >100-fold) surpass the wild-type in all cases. However, NADPH consumption is only partially coupled to product formation (14-79%). This cytochrome P450 epoxidation catalyst is a suitable starting point for further evolution to improve coupling and activity.  相似文献   

11.
Cytochrome P450 BM-3 (A74G/F87V/L188Q) could catalyze indole to produce indigo. To further improve this capability, random mutagenesis was performed on the heme domain of P450 BM-3 (A74G/F87V/L188Q) with error-prone PCR. A single mutant V445A was selected out from the error-prone library and exhibited the highest specific activity toward indole among the mutants obtained. The kinetic parameters of V445A were also highly improved. Compared with the parent enzyme, the turnover rate (k cat) of V445A was increased by 7.5 times, while its K m value decreased by 9.2 %. Consequently, the catalytic efficiency (k cat/K m) of V445A was raised to 8.2 times than that of the parent enzyme. Moreover, alanine was confirmed as the best amino acid substitution by saturated mutagenesis in Val445 position. Three-dimensional structure analysis was also used to rationalize the effect on the enzyme properties of the mutation. This study showed that random mutagenesis was efficient to identify mutants with potential values in industry and increased our insight into P450 BM-3.  相似文献   

12.
Intramolecular and intermolecular kinetic isotope effects (KIEs) were determined for hydroxylation of the enantiomers of trans-2-(p-trifluoromethylphenyl)cyclopropylmethane (1) by hepatic cytochrome P450 enzymes, P450s 2B1, Delta2B4, Delta2B4 T302A, Delta2E1, and Delta2E1 T303A. Two products from oxidation of the methyl group were obtained, unrearranged trans-2-(p-trifluoromethylphenyl)cyclopropylmethanol (2) and rearranged 1-(p-trifluoromethylphenyl)but-3-en-1-ol (3). In intramolecular KIE studies with dideuteriomethyl substrates (1-d(2)) and in intermolecular KIE studies with mixtures of undeuterated (1-d(0)) and trideuteriomethyl (1-d(3)) substrates, the apparent KIE for product 2 was consistently larger than the apparent KIE for product 3 by a factor of ca. 1.2. Large intramolecular KIEs found with 1-d(2) (k(H)/k(D) = 9-11 at 10 degrees C) were shown not to be complicated by tunneling effects by variable temperature studies with two P450 enzymes. The results require two independent isotope-sensitive processes in the overall hydroxylation reactions that are either competitive or sequential. Intermolecular KIEs were partially masked in all cases and largely masked for some P450s. The intra- and intermolecular KIE results were combined to determine the relative rate constants for the unmasking and hydroxylation reactions, and a qualitative correlation was found for the unmasking reaction and release of hydrogen peroxide from four of the P450 enzymes in the absence of substrate. The results are consistent with the two-oxidants model for P450 (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555), which postulates that a hydroperoxy-iron species (or a protonated analogue of this species) is a viable electrophilic oxidant in addition to the consensus oxidant, iron-oxo.  相似文献   

13.
Previously, stereoselective hydroxylation of α-ionone by Cytochrome P450 BM3 mutants M01 A82W and M11 L437N was observed. While both mutants hydroxylate α-ionone in a regioselective manner at the C3 position, M01 A82W catalyzes formation of trans-3-OH-α-ionone products whereas M11 L437N exhibits opposite stereoselectivity, producing trans-(3S,6S)-OH-α-ionone and cis-(3S,6R)-OH-α-ionone. Here, we explore the stereoselective C3 hydroxylation of α-ionone by Cytochrome P450 BM3 mutants M01 A82W and M11 L437N using molecular dynamics-based free energy calculations to study the interaction between the enzyme and both the substrates and the products. The one-step perturbation approach is applied using an optimized reference state for substrates and products. While the free energy differences between the substrates free in solution amount to ~0 kJ mol(-1), the differences in mutant M01 A82W agree with the experimentally obtained dissociation constants K(d). Moreover, a correlation with experimentally observed trends in product formation is found in both mutants. The trans isomers show the most favorable relative binding free energy in the range of all four possible hydroxylated diastereomers for mutant M01 A82W, while the trans product from (6S)-α-ionone and the cis product from (6R)-α-ionone show highest affinity for mutant M11 L437N. Marcus theory is subsequently used to relate the thermodynamic stability to transition state energies and rates of formation.  相似文献   

14.
Cytochrome P450 BM-3 with the mutations A74G, F87V, and L188Q could catalyze indole to produce indigo and indirubin. To further enhance this capability, site-directed and random mutageneses on the monooxygenase domain of P450 BM-3 mutant (A74G/F87V/L188Q; 3X) were performed. The mutant libraries created by error-prone polymerase chain reaction were screened using a colorimetric colony-based method on agar plates followed by a spectroscopic assay involving in absorption of indigo at 670 nm and NADPH at 340 nm in microtiter plate. Three mutants (K434R/3X, E435D/3X, and D168N/A225V/K440N/3X) exhibited higher hydroxylation activity toward indole in comparison to parent enzyme. Moreover, using saturation site-directed mutagenesis at amino acid positions 168, 225, 434, 435, and 440, two P450 BM-3 variants (D168H/3X, E435T/3X) with an up to sixfold increase in catalytic efficiency (k cat/K m) were identified, and the mutant D168H/3X acquired higher regioselectivity resulting in more indigo (dimerized 3-hydroxy-indole) compared to parent mutant (93 vs72%).  相似文献   

15.
Here we report that an engineered microbial cytochrome P450 BM-3 (CYP102A subfamily) efficiently catalyzes the alpha-hydroxylation of phenylacetic acid esters. This P450 BM-3 variant also produces the authentic human metabolite of buspirone, R-6-hydroxybuspirone, with 99.5% ee.  相似文献   

16.
17.
Ferric cytochrome P450cam from Pseudomonas putida (P450cam) in buffer solution at physiological pH 7.4 reversibly binds NO to yield the nitrosyl complex P450cam(NO). The presence of 1R-camphor affects the dynamics of NO binding to P450cam and enhances the association and dissociation rate constants significantly. In the case of the substrate-free form of P450cam, subconformers are evident and the NO binding kinetics are much slower than in the presence of the substrate. The association and dissociation processes were investigated by both laser flash photolysis and stopped-flow techniques at ambient and high pressure. Large and positive values of S and V observed for NO binding to and release from the substrate-free P450cam complex are consistent with the operation of a limiting dissociative ligand substitution mechanism, where the lability of coordinated water dominates the reactivity of the iron(III)-heme center with NO. In contrast, NO binding to P450cam in the presence of camphor displays negative activation entropy and activation volume values that support a mechanism dominated by a bond formation process. Volume profiles for the binding of NO appear to be a valuable approach to explain the differences observed for P450cam in the absence and presence of the substrate and enable the clarification of the underlying reaction mechanisms at a molecular level. Changes in spin state of the iron center during the binding/release of NO contribute significantly to the observed volume effects. The results are discussed in terms of relevance for the biological function of cytochrome P450 and in context to other investigations of the related reactions between NO and imidazole- and thiolate-ligated iron(III) hemoproteins.  相似文献   

18.
Using a combination of M?ssbauer spectroscopy and density functional calculations, we have determined that the ferryl forms of P450(BM3) and P450cam are protonated at physiological pH. Density functional calculations were performed on large active-site models of these enzymes to determine the theoretical M?ssbauer parameters for the ferryl and protonated ferryl (Fe(IV)OH) species. These calculations revealed a significant enlargement of the quadrupole splitting parameter upon protonation of the ferryl unit. The calculated quadrupole splittings for the protonated and unprotonated ferryl forms of P450(BM3) are DeltaE(Q) = 2.17 mm/s and DeltaE(Q) = 1.05 mm/s, respectively. For P450cam, they are DeltaE(Q) = 1.84 mm/s and DeltaE(Q) = 0.66 mm/s, respectively. The experimentally determined quadrupole splittings (P450(BM3), DeltaE(Q) = 2.16 mm/s; P450cam, DeltaE(Q) = 2.06 mm/s) are in good agreement with the values calculated for the protonated forms of the enzymes. Our results suggest that basic ferryls are a natural consequence of thiolate-ligated hemes.  相似文献   

19.
Summary P450SU1 and P450SU2 are herbicide-inducible bacterial cytochrome P450 enzymes from Streptomyces griseolus. They have two of the highest sequence identities to camphor hydroxylase (P450cam from Pseudomonas putida), the cytochrome P450 with the first known crystal structure. We have built several models of these two proteins to investigate the variability in the structures that can occur from using different modeling protocols. We looked at variability due to alignment methods, backbone loop conformations and refinement methods. We have constructed two models for each protein using two alignment algorithms, and then an additional model using an identical alignment but different loop conformations for both buried and surface loops. The alignments used to build the models were created using the Needleman-Wunsch method, adapted for multiple sequences, and a manual method that utilized both a dotmatrix search matrix and the Needleman-Wunsch method. After constructing the initial models, several energy minimization methods were used to explore the variability in the final models caused by the choice of minimization techniques. Features of cytochrome P450cam and the cytochrome P450 superfamily, such as the ferredoxin binding site, the heme binding site and the substrate binding site were used to evaluate the validity of the models. Although the final structures were very similar between the models with different alignments, active-site residues were found to be dependent on the conformations of buried loops and early stages of energy minimization. We show which regions of the active site are the most dependent on the particular methods used, and which parts of the structures seem to be independent of the methods.  相似文献   

20.
Norcarane (1) and spiro[2.5]octane (2) yield different product distributions depending on whether they are oxidized via concerted, radical, or cationic mechanisms. For this reason, these two probes were used to investigate the mechanisms of hydrocarbon hydroxylation by two mammalian and two bacterial cytochrome P450 enzymes. Products indicative of a radical intermediate with a lifetime ranging from 16 to 52 ps were detected during the oxidation of norcarane by P450(cam) (CYP101), P450(BM3) (CYP102), CYP2B1, and CYP2E1. Trace amounts of the cation rearrangement product were observed with norcarane for all but CYP2E1, while no cation or radical rearrangement products were observed for spiro[2.5]octane. The results for the oxidation of norcarane with a radical rearrangement rate of 2 x 10(8) s(-1) are consistent with the involvement of a two-state radical rebound mechanism, while for the slower (5 x 10(7) s(-1)) spiro[2,5]oct-4-yl radical rearrangement products were beyond detection. Taken together with earlier data for the hydroxylation of bicyclo[2.1.0]pentane, which also suggested a 50 ps radical lifetime, these three structurally similar and functionally simple substrates show a consistent pattern of rearrangement that supports a radical rebound mechanism for this set of cytochrome P450 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号