首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
获得高温、高压下可燃介质爆炸极限数值,对完善复杂工况下可燃介质燃爆安全理论、构建可燃介质爆炸防护技术提供支持。搭建了适用于开展高温、高压工况的20 L球形爆炸实验装置,测量了初始温度为20~270 ℃,初始压力为0.5~2.6 MPa下乙烷在氧气中的爆炸极限,分析温度、压力单因素对乙烷在氧气中的爆炸极限的影响以及温度和压力双因素的耦合影响。结果表明,随着初始压力和初始温度的提高,乙烷在氧气中的爆炸极限逐渐扩大。在温度小于140 ℃时,在高压和低压两种情况下,压力对乙烷爆炸上限的影响基本一致。在温度高于140 ℃时,压力的升高使乙烷爆炸上限升高,但其影响的效果逐渐减小。在初始压力小于1.6 MPa时,温度的升高使乙烷的爆炸上限升高,但其影响的效果变化很小。在压力大于1.6 MPa,温度高于140 ℃时,温度的升高使乙烷的爆炸上限升高,且其影响的效果逐渐增大。温度和压力的升高均使乙烷的爆炸下限降低,但其影响较小。初始温度和初始压力对乙烷在氧气中爆炸极限的耦合作用略小于两个因素作用的和,但大于单个因素的作用。通过拟合得到了C2H6/O2爆炸极限随初始压力、初始温度变化的定量规律。  相似文献   

2.
在20 L球形爆炸容器中对二甲醚/空气(DME/air)、二甲醚/空气/氩气(DME/air/Ar)混合物在不同初始状态下的爆炸特性进行实验研究,分析了不同初始压力、不同氩气(Ar)稀释浓度对爆炸极限、最大爆炸压力以及最大爆炸压力上升速率的影响。结果表明:DME/air混合物的最大爆炸压力和最大爆炸压力上升速率与DME在混合物中的浓度呈圆顶形关系,最大值出现在DME在混合物中的浓度为6.5%(即最佳当量比, φ=1)附近;初始压力的下降明显降低了DME/air混合物的爆炸上限,但对于其爆炸下限影响不显著;Ar的稀释对富燃DME/air混合物的最大爆炸压力和最大爆炸压力上升速率有显著的惰化作用,但对于贫燃DME/air混合物,最大爆炸压力和最大爆炸压力上升速率在一定的Ar稀释浓度范围内出现上升趋势,当Ar的稀释浓度大于20%,这2个爆炸参数值逐渐下降。  相似文献   

3.
为了研究瓦斯的爆炸危险性,选取对其影响较大的初始温度和初始压力进行实验研究。运用特殊环境20 L爆炸特性测试系统,对不同初始温度(25~200 ℃)和初始压力(0.1~1.0 MPa)条件下瓦斯的爆炸极限、最大爆炸压力和点火延迟时间进行实验研究。结果表明:高温高压条件使瓦斯的爆炸上限升高、下限降低,爆炸极限范围扩大;随着初始温度升高,瓦斯爆炸的最大爆炸压力逐渐减小;初始温度越高,点火延迟时间越短。通过对实验结果的分析,运用安全原理知识和危险度定义,给出初步评估瓦斯爆炸危险性的方法。  相似文献   

4.
为了研究不同初始条件对甲烷-空气混合物爆炸极限的影响,利用容积为20 L的爆炸罐,在不同初始温度(25~200 ℃)和初始压力(0.1~1.0 MPa)条件下测定了甲烷-空气混合物的爆炸极限。实验结果表明,随着初始温度和初始压力的升高,爆炸上限升高,爆炸下限降低,爆炸极限范围扩大。在实验温度和压力范围内,常压/常温条件下,爆炸上限和下限与初始温度/初始压力呈线性相关。爆炸上限与初始温度的相关性受初始压力的影响,其与初始压力的相关性也与初始温度有关。然而,初始压力/初始温度对爆炸下限的影响与初始温度/初始压力的相关性并不显著。初始温度和初始压力对爆炸极限的耦合影响比单一因素对其的影响大,且相较而言,其对爆炸上限的影响更为显著。本文中绘制了影响曲面来描述初始温度和初始压力如何影响甲烷-空气混合物的爆炸极限。  相似文献   

5.
为了研究不同湿度条件下低浓度甲烷-空气混合物爆炸特征,设计了饱和湿空气发生及储存装置,对管路、气囊和爆炸腔体进行温度控制和流量调节,实现了不同相对湿度的甲烷-空气混合气体的配置。采用20 L球形爆炸测试装置,分析不同相对湿度、甲烷浓度对混合物的最大爆炸压力、最大压力上升速率、爆炸下限及层流燃烧速度的影响。结果表明,随着相对湿度增大,最大爆炸压力和最大爆炸压力上升速率逐渐下降,且呈一定的线性关系。混合气体相对湿度从27.7%增大到80.1%时,甲烷爆炸下限从5.15%上升到5.25%,上升率1.9%,层流燃烧速度随相对湿度的增大也呈线性降低趋势。在本文条件下,相对湿度对甲烷-空气混合物的爆炸影响较小,这主要与常温常压下水蒸气的饱和分压力较低有关,但在高温高压时仍需考虑水蒸气含量的增大对混合气体爆炸特征的影响。  相似文献   

6.
An experimental investigation is performed to characterize the detonability of small gaseous clouds with a concentration gradient. Two types of gaseous mixtures are used: (i) a heavy gas (equivalence ratio : ); (ii) a light gas . The mixtures are initially confined in a hemispherical volume which is characterized by an initial radius m. When the confining is ruptured, the gaseous mixture diffuses into the surrounding air. The concentration distribution is a result of molecular diffusion, gravity and turbulence. Schlieren chronophotographies enable the illustration of the dispersion of the cloud. By means of pressure profiles of blast waves generated by the explosion, the limit between the two explosion phenomena (total and partial explosive charge) is defined. The limit time delay, which leads to a given concentration distribution and for which detonations cannot be observed, is investigated with respect to initial gaseous composition and initial volume of confining. The critical nominal initiation energies in uniform and non-uniform media are characterized. Received 19 October 1998 / Accepted 15 July 1999  相似文献   

7.
An experimental investigation was performed to establish the dependence of concentration limits of detonation re-initiation behind a multi-orifice plate on mixture composition and initial pressure for hydrogen–air mixtures. The experiments were carried out in detonation tubes of diameter 106 and 141 mm, separated by a multi-orifice plate into two sections. The tubes were equipped with pressure gauges and a semi-cylindrical smoked plate. It is shown that initial pressure has strong influence on the value of concentration limit, especially for lean hydrogen–air mixtures. On the basis of soot records it can be inferred that re-initiation occurs due to two different mechanisms that depend on the mixture sensitivity and properties of the multi-orifice plate.  相似文献   

8.
崔洋洋  王成  钱琛庚  谷恭天  高扬 《力学学报》2022,54(8):2173-2193
近年来氢的使用范围逐渐发展到各个领域, 含氢多元混合物气体在工业生产及生活燃料中被普遍使用. 为了保障含氢气体在生产、运输、使用等各个环节的安全性, 构建了开放空间混合气体爆炸测试实验系统, 研究了H2/CH4/空气混合气体爆炸压力及火焰传播特性, 给出了不同氢摩尔分数(100%, 75%, 66.67%, 50%, 33.33%)、混合气体当量比(0.8, 1.0, 1.1, 1.2, 1.4)、可燃云团尺寸(1 m3, 4 m3, 8 m3)及障碍物约束等因素对混合气体爆炸压力及火焰的影响规律. 基于经典TNT当量法, 建立了考虑混合气体组分比及可燃云团尺寸的最大爆炸超压预测模型, 修正了爆炸火焰传播半径理论模型. 结合高精度数值模拟技术揭示了加气站内建筑结构对混合气体爆炸的影响. 研究表明, 氢气的加入能够明显增强气体爆炸强度, 最大爆炸超压、火焰传播速度均随氢摩尔分数的增加而增大, 随当量比的增大先增大后减小, 当量比为1.1~1.2时最大; 通过对大尺度混合气体爆炸数值仿真与分析发现, 加气站内不同建构筑物条件下爆炸火焰传播距离、传播速度、最大爆炸超压等关键参数明显不同, 顶部和背部同时约束时, 爆炸伤害范围及事故后果最严重, 因此在划定加气站安全距离时, 应充分考虑不同建筑结构的影响.   相似文献   

9.
Yu.V. Tunik 《Shock Waves》1999,9(3):173-179
In the present paper the direct initiation of a self supporting detonation and propagation of a low-speed combustion in methane-air-coal particles mixtures are solved. For particles, a heterogeneous regime of combustion is used, for methane one overall chemical reaction is taken into account: CH + 2O = CO + 2HO. The heat release rate is assumed to be defined as a delay time based on the well-known thermal theory of Frank-Kamenetsky (1967). The proposed model allows one to investigate the influence inert particles or coal dust on the explosion limits of methane-air mixtures. It is shown that the addition of a limited quantity of particles leads to detonation stability. In low speed combustion problems this method allows one to get a good correlation between theoretical and experimental velocities of steady flame propagation in carbon-hydrogen gaseous mixtures. Coal dust influence on gasdynamics of a methane-air mixture combustion is investigated in an unsteady problem by using of the global modelling. It is shown that limited coal dust concentration increases the flame wave intensity in lean methane-air mixtures in contrast to inert particles. In stoichiometric gas mixtures, sand and coal dusts decrease a flame velocity. Far from the ignition point flame, the velocity is largely defined by the dust mass concentration and not by the size of particles. Received 5 July 1997 / Accepted 13 July 1998  相似文献   

10.
掌握甲烷与二氧化碳混合气体的爆燃特性对高含二氧化碳天然气的勘探、开发和利用具有安全保 障作用,对涉及甲烷和二氧化碳的其他工业过程如煤炭气化、惰化、抑爆、泄爆等应急处置和安防设计具有指 导价值。为推动相关学科的进步,分类回顾了甲烷与二氧化碳混合气体爆燃特性的实验和理论研究进展,涉 及爆燃范围、爆燃压强、惰化等爆燃特性的实验研究以及爆燃范围领域的理论研究,系统分析和评价了各个研 究领域取得的成果、存在的问题,并从提高实验数据的完整性、可比性和适用面,理论预测方法可靠性的评价 方法与指标,理论预测方法的适用面从常温常压条件向更复杂的情形扩展3个方面展望了未来的研究重点。  相似文献   

11.
在大型多相混合物爆炸实验系统(10m3爆炸罐)中对甲烷/空气混合物在40J电火花点火条件下爆炸发展过程进行了实验和数值模拟研究.采用中心电火花点火,并在距点火点不同距离处设置4个压力传感器.得到下列实验结果:甲烷爆炸上、下限分别为13.9%、4.75%;甲烷浓度为9.5%的爆炸特性参数随距离变化规律;不同甲烷浓度对超压...  相似文献   

12.
王悦  白春华 《爆炸与冲击》2016,36(4):497-502
基于自行研发的20 L二次脉冲气动喷雾多相爆炸测试系统和全散射粒径测量系统,对乙醚液体燃料瞬态雾化云雾场的燃爆参数进行实验研究。通过调节气动压力、设计喷雾剂量,得到了粒径相同、质量浓度不同的乙醚云雾燃爆超压、温度及点火延迟时间等燃爆参数。结果表明,在索特平均直径为22.90 μm的条件下:乙醚云雾与空气混合物的燃爆下限为80.26 g/m3,燃爆上限为417.34 g/m3;最大超压峰值为0.78 MPa,其出现在云雾质量浓度为278.23 g/m3时;最大爆温峰值为1 260 ℃,其出现在云雾质量浓度为228.29 g/m3时;点火延迟时间在燃爆极限范围内呈U型分布。  相似文献   

13.
为了探究多因素耦合作用对甲烷爆炸特性的影响,采用1.2 L圆柱形爆炸装置,结合自主设计和搭建的可燃气体爆炸试验平台,从最大爆炸压力的角度分析了不同当量比φ(0.6~1.4)、初始温度T0 (25~200℃)和初始压力p0(0.1~0.5 MPa)耦合条件对甲烷爆炸特性的影响规律。在此基础上,基于实验获得的最大爆炸压力数据,利用1stOpt构建了甲烷最大爆炸压力与当量比、初始温度和初始压力的非线性回归预测模型。结果表明:在初始温度和初始压力耦合作用下,初始压力越高,初始温度对最大爆炸压力的影响越大;初始温度越高,初始压力对最大爆炸压力的影响越小。在初始压力和当量比耦合作用下,在研究的实验条件范围内,当φ<0.9或φ>1.2时,初始压力越高,最大爆炸压力的变化越显著。在初始温度和当量比耦合作用下,在实验条件范围内,当φ>1.15时,初始温度越高,最大爆炸压力的变化越显著。此外,通过将基于1stOpt预测模型的预测结果与实验测试结果相比较,发现二者之间的相对误差均小于10%,表明该预测模型具有较高的精度和适应性。  相似文献   

14.
针对石化装置罐区大口径、长距离管道内火焰传播缺乏系统研究的问题,设计搭建了DN50~DN500工业尺度管道火焰传播实验装置,并开展了丙烷/空气、乙烯/空气等可燃气体在不同管径下的实验研究。实验结果表明:可燃气体积分数对火焰传播及爆轰有一定影响,当接近化学计量浓度时,爆轰加速距离更短,更易形成稳态爆轰,而当可燃气混合气为贫燃或富燃状况时,爆轰加速距离则会增长;火焰爆轰传播速度、爆轰压力与管道管径基本无关,受可燃气种类影响更大;对应体积分数为6.6%的乙烯/空气和体积分数为4.2%的丙烷/空气混合气体,爆轰压力分别是初始压力的15.17和14.47倍,DN150以下管径内的爆轰压力远高于ISO16852标准给出的参考值。罐区连通管道阻火器选型安装时,应结合安装位置选用合适的阻火器。  相似文献   

15.
将CO2充入的液化石油气中并进行点火,研究不同初始温度下CO2对多元混合气液化石油气爆炸的抑制作用。实验显示:初始温度15℃时CO2体积分数达到36%时,混合气体退出可爆范围,临界氧浓度为12.8%;初始温度50℃时CO2体积分数达到39%时,混合气体退出可爆范围,临界氧浓度为12.2%。结果表明:CO2对液化石油气爆炸的抑制效果在一定程度上要受环境温度的影响。  相似文献   

16.
设计了一套可燃液体爆炸特性实验装置,利用该装置和立式爆轰管对RP-5油料、RP-3油料及工业酒精的爆炸特性、1301惰性气体对这3种燃料的抑制进行了研究。结果表明:RP-5油料、RP-3油料及工业酒精爆炸的体积分数范围分别为1.53%~7.73%、0.82%~7.17%及 3.38%~18.25%;酒精云雾爆轰的临界起爆能为2.11 MJ/m2、爆速和爆压分别为1 609 m/s 、1 480 kPa,爆轰波传播的胞格宽度为14.5 mm,长度为16.2 mm。1301惰性气体对RP-5油料、RP-3油料及工业酒精的最小惰化体积分数分别为6.75%、6.8%及 5.56%;二氧化碳和氮气对RP-3油料的最小惰化体积分数分别为45%和49%;1301惰性气体对油料爆炸抑制效果明显好于二氧化碳与氮气。  相似文献   

17.
Previous research into detonation physics has mostly utilized gaseous fuels such as hydrogen, acetylene, ethylene, and propane. If these fuels were to be used for a pulse detonation engine, they have to be stored under high pressure in steel containers which increase weight safety risks. In order to increase energy density of fuel, liquid fuel was chosen. Tests were conducted on detonation initiation of JP-8/oxygen mixtures at different initial temperatures and equivalence ratios. These tests found a reduction in the rich limit with increasing initial temperature, and the minimum deflagration-to-detonation run-up distance was approximately 200 mm, which was similar to propane/oxygen mixture results. A rapid increase in deflagration-to-detonation run-up distance was observed at equivalence ratios close to the lean and rich limits. Experiments of JP-8/oxygen and propane/oxygen mixtures with nitrogen dilution were also conducted. As the nitrogen/oxygen ratio increased, the lean and rich limits decreased while the detonation wave could not be successfully initiated as the nitrogen-to-oxygen ratio was greater than 0.4.  相似文献   

18.
The effect of pressure on the characteristics of syngas flames is investigated under gas turbine relevant conditions using planar laser induced fluorescence of OH radicals and OH* chemiluminescence imaging. An optically accessible combustor fitted with a swirl burner was operated with two different syngas mixtures, preheated air at 700?K, and pressures ranging from 5 to 20?bars. The thermal load varied from 15 to 25?kW/bar at an equivalence ratios 0.5. The OH-PLIF measurements show that the flames under all conditions exhibited two reaction fronts, one at the shear layer between the inner recirculation zone and the fuel inlet, and one between the fuel inlet and the air nozzle. The more or less continuous reaction front at low pressure turned into a highly corrugated flame front at higher pressures, with isolated regions of ignition and extinction. The probability density distribution of the flame curvature for the mixtures studied showed that the inner and outer flame responded differently to the pressure increase, with the mean curvature magnitude also depending on the mixture composition and thermal load. The measurements clearly shows the limitations associated with the use of OH* chemiluminescence images as a marker for the heat release rate especially in case of syngas mixtures.  相似文献   

19.
为研究瓦斯煤尘复合爆炸影响因素的耦合规律,对煤粉质量浓度、甲烷体积分数、煤粉粒径、煤粉种类等4种影响因素进行了多因素与单因素实验分析。通过正交实验,将各因素对爆炸的影响进行了定量分析,结果表明,4个因素对最大爆炸压力pmax的影响由强到弱依次为:甲烷体积分数、煤粉质量浓度、煤粉种类、煤粉粒径;对最大爆炸压力上升速率(dp/dt)max的影响程度由强到弱依次为:甲烷体积分数、煤粉质量浓度、煤粉粒径、煤粉种类。对于体积分数为9%、11%的甲烷,复合体系的pmax随煤粉的质量增加而减小。当煤粉质量浓度增加到100、200 g/m3时,在与体积分数为6%的甲烷耦合作用下,会产生更强的“激励”作用,且煤粉浓度较大时,挥发分低的煤种最佳瓦斯浓度会降低。甲烷体积分数存在临界值,该临界值会改变挥发分因素的影响方式:低于此临界值时,高挥发分煤尘体系的(dp/dt)max更高,(dp/dt)max来临时间更短;高于此临界值时,低挥发分体系具有更高的爆炸强度。粒径影响挥发分的作用,粒径越大,挥发分的影响差异越明显。当甲烷体积分数为11%时,挥发分高的煤尘更容易受粒径的影响,直径小的煤尘体系,爆炸系数Kst更小;而低挥发分煤粉在甲烷体积分数接近当量时受粒径影响更明显。  相似文献   

20.
In the point explosion problem it is assumed that an instantaneous release of finite energy causing shock wave propagation in the ambient gas occurs at a space point. The results of the solution of the problem of such blasts are contained in [1–4]. This point model is applied for the determination of shock wave parameters when the initial pressure in a sphere of finite radius exceeds the ambient air pressure by 2–3 orders of magnitude. The possibility of such a flow simulation at a certain distance from the charge is shown in papers [4, 5] as applied to the blast of a charge of condensed explosive and in [6, 8] as applied to the expansion of a finite volume of strongly compressed hot gas. In certain practical problems the initial pressure in a volume of finite dimensions exceeds atmospheric pressure by a factor 10–15 only. Such cases arise, for example, in the detonation of gaseous fuel-air mixtures. The present paper considers the problem of shock wave propagation in air, caused by explosion of gaseous charge of spherical or cylindrical shape. A numerical solution is obtained in a range of values of the specific energy of the charge characteristic for fuel-air detonation mixtures by means of the method of characteristics without secondary shock wave separation. The influence of the initial conditions of the gas charge explosion (specific energy, nature of initiation, and others) is investigated and compared with the point case with respect to the pressure difference across the shock wave and the positive overpressure pulse.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 110–118, May–June, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号