首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polystyrene–poly(ethylene oxide) PS–PEO di- and triblock copolymers have been used as stabilizers in the emulsion polymerization of styrene and styrene–butylacrylate for the preparation of “hairy latexes”. The polymerization kinetics and the efficiency of these polymeric surfactants were correlated with the molecular characteristics of the block copolymer. It was shown that the efficiency decreased with increasing molecular weight and PS content of the block copolymer. The PEO frige, with a thickness of 4–25 nm, on the latex particle surface could be characterized and it was shown by differential scanning calorimetry (DSC) that water is strucured in that PEO layer. Film formation with “hairy latexes” was also examined both by DSC and thermomechanical analysis. The properties and application possibilities, such as in controlled latex flocculation, have been reviewed.  相似文献   

2.
In this article, a wide range of latexes are evaluated as possible foam stabilizers. These include near-monodisperse, poly(N-vinyl pyrrolidone)-stabilized polystyrene [PNVP-PS] latexes with diameters ranging from 170 nm to 1.62 microm, submicrometer-sized poly(ethylene glycol)-stabilized polystyrene [PEGMA-PS] latex particles, a PNVP-stabilized poly(4-bromostyrene) [PNVP-PBrS] latex with a mean diameter of 870 nm, two PNVP-stabilized poly(methyl methacrylate) [PNVP-PMMA] latexes with mean diameters of 730 nm and 1.20 microm, a PNVP-stabilized poly(2-hydroxypropyl methacrylate) [PNVP-PHPMA] latex with a mean diameter of 630 nm, and a charge-stabilized anionic PS latex of 220 nm diameter. The effect of varying the particle size, latex concentration, and latex surface composition on foam stability were studied in detail. The larger PNVP-PS latexes, the PNVP-PBrS, and the two PNVP-PMMA latexes gave highly stable foams, whereas PEGMA-PS, PNVP-PHPMA, and the charge-stabilized PS latex produced either no foams or foams with inferior long-term stabilities. Scanning electron microscopy studies revealed hexagonally close-packed latex arrays in the walls of the dried foam, which leads to localized moiré patterns being observed by optical microscopy. Moreover, these dried foams are highly iridescent in bright transmitted light.  相似文献   

3.
Semiconductor nanoparticle/polystyrene latex composite materials   总被引:1,自引:0,他引:1  
Cadmium sulfide and cadmium selenide/cadmium sulfide core/shell nanoparticles stabilized with poly(cysteine acrylamide) have been bound to polystyrene (PS) latexes by three methods. First, anionic 5 nm diameter CdS particles were electrostatically attached to 130 nm surfactant-free cationic PS latexes to form stable dispersions when the amount of CdS particles was less than 10% of the amount required to form a monolayer on the surface of the PS particles or when the amount of CdS particles exceeded the amount required to form a monolayer on the PS particles. Transmission electron microscopy (TEM) showed nanoparticles on the surface of the latex particles. Fluorescence spectra showed unchanged emission from the nanoparticles. Second, anionic, surfactant-free PS latexes were synthesized in the presence of CdS and CdSe/CdS nanoparticles. TEM showed monodisperse latex particles with trapped nanoparticles. Third, surfactant-stabilized latexes were synthesized by copolymerization of styrene with vinylbenzyl(trimethyl)ammonium chloride electrostatically bound to the CdSe/CdS nanoparticle surface. Brownian motion of the submicroscopic composite particles in water was detected by fluorescence microscopy.  相似文献   

4.
With a view to preparing monosized hydrophilic functional magnetic latex particles based on a two-step strategy using anionic iron oxide and cationic polymer latexes, the adsorption step was systematically investigated for a better control of the subsequent encapsulation step. The iron oxide nanoparticles were first obtained according to the classical precipitation method of ferric and ferrous chloride salt using a concentrated sodium hydroxide solution, whereas the polystyrene (PS), P(S/N-isopropylacrylamide (NIPAM)) core–shell and PNIPAM latexes were produced via emulsion and precipitation polymerizations, respectively. The polymer and inorganic colloids were then characterised. The adsorption of iron oxide nanoparticles onto the three types of polymer latexes via electrostatic interaction was studied as a function of iron oxide particle concentration, charge density and the cross-linking density of the hydrophilic layer. The maximum amounts of magnetic nanoparticles adsorbed onto the various latexes were found to increase in the following order: PS < P(S/NIPAM) < P(NIPAM). This significant difference is discussed by taking into account the charge distribution in the hydrogel layer and diffusion phenomena inside the cross-linked hydrophilic shell. Received: 28 December 1998 Accepted in revised form: 15 April 1999  相似文献   

5.
The capability of carboxylated latexes of poly(methyl methacrylate) and copolymers of styrene with glycidyl methacrylate or methacrylic acid for self-organization in thin films was studied in relation to the compositions of the dispersion medium and polymer and to the latex particle size.__________Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 1, 2005, pp. 161–167.Original Russian Text Copyright © 2005 by Men’shikova, Shabsel’s, Evseeva, Shevchenko, Bilibin.  相似文献   

6.
Summary: This article deals with recent progress including the authors' work concerning the application of block copolymers as polymeric surfactants in heterophase polymerizations. The synthesis methods for preparing block copolymers by emulsion and dispersion techniques are outlined, with emphasis on recently developed controlled free radical polymerizations in aqueous media. Specific characteristics of amphiphilic block copolymers are described, for example, micellization and emulsifying effects. A general overview of emulsion and dispersion polymerization in an aqueous and organic medium with ionic and nonionic block copolymers is presented for the preparation of electrosteric and sterically stabilized latex particles. Typical examples of microemulsion, miniemulsion, oil‐in‐oil emulsion, and micellar polymerizations are provided. Current and potential developments of so‐called “hairy latexes”, inverse‐, multiple‐, and solid emulsions, as well as of nonaqueous polymeric dispersions are also discussed.

PS foam obtained by free radical polymerization of water‐in‐styrene, stabilized with a PS–PEO diblock copolymer.  相似文献   


7.
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A series of heterogeneous latexes having stage ratios of 40:60 between the first and second stage polymers were prepared by emulsion polymerization. The first-stage polymers were non-polar S-BuA with Tgs ranging from + 100 °C to + 20 °C and the second stage polymer was polar MMA–BuA–MAA having a Tg of 20 °C. The latex particle morphologies were studied using TEM and the thermomechanical properties of the resulting latex films were studied with DSC and DMA. Calculated diffusion rates for propagating species during the reactions were correlated to the observed morphologies and to the amount of interphase in the latex particles. To cite this article: O.J. Karlsson et al., C. R. Chimie 6 (2003).  相似文献   

9.
Polyethylene macromolecular free radical initiators, obtained by ozonization, are used to prepare graft copolymers with methyl methacrylate, styrene and vinyl chloride. The reactions parameters are the number of initiator groups (found by DPPH), peroxide and hydroperoxide proportions (respectively 36 and 64%), decomposition rate (Kd at 90° 10−1sec−1) and monomer concentration. The molecular structure of these copolymers is defined.  相似文献   

10.
Ultrafine polymer nanoparticles based on poly(ethylene oxide) (PEO) macromonomer-grafted polystyrene (PS) have been synthesised by emulsifier-free emulsion polymerisation. In addition to the binary copolymerisation between PEO macromonomer and styrene, ternary copolymerisations were also conducted in the presence of a cationic monomer (2-(methacryloyloxy)ethyl) trimethylammonium chloride (MATMAC) as a second comonomer. The size and charge characteristics of fine nanoparticles were characterised using both photon correlation spectroscopy and transmission electron microscopy techniques as well as colloidal titration. It was found that after PEO chains (repeat unit 9 or higher) were incorporated into the PS latex, the particle size was significantly reduced owing to the steric effect contributed from grafted PEO chains. Ternary copolymerisation using MATMAC as comonomer further reduced the particle size, leading to nanoparticles as small as 60 nm. Increasing the MATMAC feed ratio gradually reduced the final size of the nanoparticle, owing to the enhancement in electrostatic stabilisation, whereas increasing the PEO macromonomer feed ratios led to slightly larger particles but significantly inhibited the agglomeration of primary particles. The formation mechanism of the nano- or microparticles with various sizes during polymerisation is discussed in terms of nucleation, agglomeration and adsorption of primary particles.  相似文献   

11.
Using novel multihalide compounds based on 4‐tert‐butylcalix[4,6,8]arenes as initiators, molecularly well‐defined polystyrenes (PS) and poly[alkyl‐(meth)acrylates] could be obtained by atom transfer radical polymerization (ATRP). This core‐first approach and therefore the very same initiators also served to derive star block copolymers. Dendrimer‐like architectures based on poly(ethylene oxide) (PEO) and PS were prepared upon combination of anionic polymerization for the inner PEO part and ATRP for the outer PS shell.  相似文献   

12.
Isotherms of monolayers of poly(ethylene oxide) (PEO) and polystyrene (PS) triblock copolymers spread at the air/water interface were obtained by film balance technique. In a low concentration regime, the PEO segments surrounding the PS cores behave the same way as in monolayers of PEO homopolymers. Langmuir-Blodgett (LB) films prepared by transferring the monolayers onto mica at various surface pressures were analyzed by atomic force microscopy (AFM). The results reveal that these block copolymers form micelles at the air/water interface. Within the micelles, the PS blocks act as anchoring structures at the interface. In several cases, aggregation patterns were modified by the dewetting processes that occur in Langmuir-Blodgett films transferred to solid substrates. High transfer surface pressures and metastable states favored these changes in morphology. A flowerlike surface micelle model is proposed to explain the organization of the surface circular micelles. The model can be generalized and applied to diblock copolymers as well. The model permits prediction of the aggregation number and the size of circular surface micelles formed by PEO/PS block copolymers at the air/water interface.  相似文献   

13.
In this study, we report the use of a double‐headed dialkoxyamine trithiocarbonate ( I ) capable of acting as chain transfer agent via reversible addition‐fragmentation chain transfer polymerization or as initiator via nitroxide‐mediated polymerization. It is worth mentioning that I was revealed as an effective dual chain transfer agent in the synthesis of multiblock copolymers via bulk and emulsion processes. In this article, we report the employing of I in dispersed systems to obtain amphiphilic multiblock copolymers and latexes. In this case, a water soluble macroagent of PAA previously synthetized was used in disperse media using a mixture of methanol/water (70:30, w/w). Stable latexes were obtained via polymerization‐induced self‐assembly and surface‐initiated polymerization of SSNa from alkoxyamine‐functionalized latex PAA‐b‐PS‐b‐PAA was also obtained © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 437–444  相似文献   

14.
Products of the radical dispersion copolymerization of methacryloyl‐terminated poly(ethylene oxide) (PEO) macromonomer and styrene were separated and characterized by size exclusion chromatography (SEC), full adsorption‐desorption (FAD)/SEC coupling and eluent gradient liquid adsorption chromatography (LAC). In dimethylformamide, which is a good solvent for PEO side chains but a poor solvent for polystyrene (PS), amphiphilic PS‐graft‐PEO copolymers formed aggregates, which were very stable at room temperature even upon substantial dilution. The aggregates disappeared at high temperature or in tetrahydrofuran (THF), which is a good solvent for both homopolymers and for PS‐graft‐PEO. FAD/SEC procedure allowed separation of homo‐PS from graft‐copolymer and determination of both its amount and molar mass. Effective molar mass of graft‐copolymer was estimated directly from the SEC calibration curve determined with PS standards. Presence of larger amount of the homo‐PS in the final graft‐copolymer products was also confirmed with LAC measurements. The results indicate that there are at least two or maybe three polymerization loci; namely the continuous phase, the particle surface layer and the particle core. The graft copolymers are produced mainly in the continuous phase while PS or copolymer rich in styrene units is formed mostly in the core of monomer‐swollen particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2284–2291, 2000  相似文献   

15.
Some application possibilities of block copolymers for the morphology control in polymeric multiphase systems are reviewed. The microdomain formation of block copolymers in the solid state is illustrated in the case of functionalized block copolymers and for interpolymer complexes. The preparation of “hairy latex” by emulsion polymerization in the presence of hydrophilic-hydrophobic block copolymers is shown in connection with their applications in the controlled agglomeration process of latexes and for the preparation of polymer particles having microvoids. The surface activity of block copolymers in polymeric oil-in-oil systems is illustrated for silicone oil filled polymers. These materials have a low kinetic friction coefficient and act as reservoir systems with the lubricant incorporated in the polymer matrix.  相似文献   

16.
A series of well‐defined ABC 3‐Miktoarm star‐shaped terpolymers [Poly(styrene)‐Poly(ethylene oxide)‐Poly(ε‐caprolactone)](PS‐PEO‐PCL) with different molecular weight was synthesized by combination of the “living” anionic polymerization with the ring‐opening polymerization (ROP) using macro‐initiator strategy. Firstly, the “living” poly(styryl)lithium (PS?Li+) species were capped by 1‐ethoxyethyl glycidyl ether(EEGE) quantitatively and the PS‐EEGE with an active and an ethoxyethyl‐protected hydroxyl group at the same end was obtained. Then, using PS‐EEGE and diphenylmethylpotassium (DPMK) as coinitiator, the diblock copolymers of (PS‐b‐PEO)p with the ethoxyethyl‐protected hydroxyl group at the junction point were achieved by the ROP of EO and the subsequent termination with bromoethane. The diblock copolymers of (PS‐b‐PEO)d with the active hydroxyl group at the junction point were recovered via the cleavage of ethoxyethyl group on (PS‐b‐PEO)p by acidolysis and saponification successively. Finally, the copolymers (PS‐b‐PEO)d served as the macro‐initiator for ROP of ε‐CL in the presence of tin(II)‐bis(2‐ethylhexanoate)(Sn(Oct)2) and the star(PS‐PEO‐PCL) terpolymers were obtained. The target terpolymers and the intermediates were well characterized by 1H‐NMR, MALDI‐TOF MS, FTIR, and SEC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1136–1150, 2008  相似文献   

17.
We have developed a new benign means of reversibly breaking emulsions and latexes by using “switchable water”, an aqueous solution of switchable ionic strength. The conventional surfactant sodium dodecyl sulfate (SDS) is not normally stimuli‐responsive when CO2 is used as the stimulus but becomes CO2‐responsive or “switchable” in the presence of a switchable water additive. In particular, changes in the air/water surface tension and oil/water interfacial tension can be triggered by addition and removal of CO2. A switchable water additive, N,N‐dimethylethanolamine (DMEA), was found to be an effective and efficient additive for the reversible reduction of interfacial tension and can lower the tension of the dodecane/water interface in the presence of SDS surfactant to ultra‐low values at very low additive concentrations. Switchable water was successfully used to reversibly break an emulsion containing SDS as surfactant, and dodecane as organic liquid. Also, the addition of CO2 and switchable water can result in aggregation of polystyrene (PS) latexes; the later removal of CO2 neutralizes the DMEA and decreases the ionic strength allowing for the aggregated PS latex to be redispersed and recovered in its original state.  相似文献   

18.
Antoine-Laurent de Lavoisier published his results on ‘meat stock’ preparation in 1783. Measuring density, he stated that ‘food principles’ were better extracted using a large quantity of water. This result was checked. To cite this article: H. This et al., C. R. Chimie 9 (2006).  相似文献   

19.
We report the synthesis and characterization of polymer/Laponite nanocomposite latex particles through emulsion polymerization using organically modified Laponite clay platelets as seeds. Two approaches were adopted for the organic modification of Laponite. The first one is based on the grafting of either γ-methacryloyloxy propyl dimethyl-methoxysilane (γ-MPDES) or γ-methacryloyloxy propyl triethoxysilane (γ-MPTES) on the clay edges. The other strategy consists in exchanging the clay interlayer sodium ions by either a free radical initiator, 2,2-azobis(2-methyl propionamidine)hydrochloride (AIBA) or a cationic vinyl monomer, 2-(methacryloyloxy)ethyl trimethyl ammonium chloride (MADQUAT). The grafting was characterized both qualitatively using FTIR and quantitatively using elemental analysis or UV analysis. The results show that the degree of functionalization depends on the nature of the organic modifier. Before performing the emulsion polymerization reaction, the functionalized clay platelets were successfully dispersed in water. Nanocomposite latexes were then synthesized using a mixture of styrene (Styr) and butyl acrylate (BA) and sodium dodecyl sulphate (SDS) as anionic surfactant. An important result of the present work is that clay redispersion in water is a key step of the overall process. The larger the size of the clay aggregates, the poorer the stability of the resulting latex suspension. The morphology and mechanism of formation of the nanocomposite particles are discussed.  相似文献   

20.
The star block copolymers with polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as side chains and hyperbranched polyglycerol (HPG) as core were synthesized by combination of atom transfer radical polymerization (ATRP) with the “atom transfer nitroxide radical coupling” (“ATNRC”) reaction. The multiarm PS with bromide end groups originated from the HPG core (HPG‐g‐(PS‐Br)n) was synthesized by ATRP first, and the heterofunctional PEO with α‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy group and ω‐hydroxyl group (TEMPO‐PEO) was prepared by anionic polymerization separately using 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) as parents compound. Then ATNRC reaction was conducted between the TEMPO groups in PEO and bromide groups in HPG‐g‐(PS‐Br)n in the presence of CuBr and pentamethyldiethylenetriamine (PMDETA). The obtained star block copolymers and intermediates were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, fourier transform‐infrared in detail. Those results showed that the efficiency of ATNRC in the preparation of multiarm star polymers was satisfactory (>90%) even if the density of coupling cites on HPG was high. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6754–6761, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号