首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin W  Xu Q  Li W 《Electrophoresis》2000,21(7):1415-1420
Capillary zone electrophoresis was employed for the determination of clozapine using an end-column amperometric detection at a carbon fiber array microdisk electrode with simplified capillary/electrode alignment. The optimum conditions of separation and detection are: Britton-Robinson buffer, pH 2.0 (1.3 x 10(-2) mol/L total concentration of acids, 3.2 x 10(-3) mol/L NaOH), 15 kV for separation voltage, 5 kV and 10 s for injection voltage and injection time, respectively. The limit of detection is 4.2 x 10(-7) mol/L or 1.2 fmole (signal to noise, S/N = 2). The relative standard deviation is 1.4% for the migration time and 2.5% for the electrophoretic peak current. The method was applied to the determination of clozapine in human blood. The recovery of the method is between 94-104%.  相似文献   

2.
Jin W  Yu D  Dong Q  Ye X 《Electrophoresis》2000,21(5):925-929
Capillary zone electrophoresis was employed for the determination of pipemidic acid using an end-column amperometric detection with a carbon fiber microdisk array electrode, at a constant potential of -1.10 V vs. saturated calomel electrode. The optimum conditions of separation and detection were 1.2 x 10(-4) mol/LNaOAc - 8.8 x 10(-4) mol/ LHOAc for the buffer solution, 20 kV for the separation voltage, 5 kV and 10 s for the injection voltage and the injection time. The limit of detection was 1.05 x 10(-7) mol/L or 189 amol (S/N=3). The relative standard deviation was 0.31% for the migration time and 2.0% for the electrophoretic peak current. The method was applied to determining pipemidic acid in human serum.  相似文献   

3.
Jin W  Dong Q  Yu D  Ye X 《Electrophoresis》2000,21(8):1535-1539
Capillary zone electrophoresis was employed for the determination of myoglobin in human urine using end-column amperometric detection with a carbon fiber microelectrode at a constant potential of 1.80 V vs. saturated calomel electrode (SCF). The optimum conditions of separation and detection are: 3.73 x 10-4 mol/L sodium diethyl malonyl urea (barbitone sodium), 1.34 x 10-4 mol/L HCl for the buffer solution, 20 kV for separation voltage, 5 kV and 5 s for injection voltage and injection time, respectively. The limit of detection is 4.4 x 10-8 mol/L or 84 amole signal to noise (S/N = 2). The relative standard deviation is 2.9% for the migration time and 2.5% for the electrophoretic peak current. The method can be used for the determination of myoglobin in human urine. The samples can be directly injected and need no pretreatment. The method is also rapid, less than 2 min, and has a recovery rate of 94-106%.  相似文献   

4.
毛细管电泳柱端安培检测装置的研制   总被引:2,自引:1,他引:2  
研制了一种新型的毛细管电泳柱端型安培检测装置。以直径为6μm的碳纤维微电极为工作电极,在自组装的ACS-2000毛细管电泳仪上,考察了用不同内径毛细管分离时分离电压对背景噪声的影响。利用该装置同时测定了3种苯二酚的异构体。  相似文献   

5.
Dong Q  Yu D  Ye X  Jin W 《Electrophoresis》2001,22(1):128-133
Capillary zone electrophoresis was employed for the determination of human serum transferrin using end-column amperometric detection with a carbon fiber microelectrode at a constant potential of 1.9 V vs. saturated calomel electrode (SCE). The optimum conditions of separation and detection are 7.5 x 10(-4) mol/L Tris-3.44 x 10(-4) mol/L HCl for the buffer solution, 20 kV for the separation voltage, 5 kV and 10 s for the injection voltage and the injection time, respectively. The limit of detection is 6.7 x 10(-8) mol/L or 440 amol (S/N = 2). The relative standard deviations are 0.67% for the migration time and 1.5% for the electrophoretic peak current. The method was applied to the determination of transferrin in human serum. The recovery is between 93-104%.  相似文献   

6.
Capillary zone electrophoresis is employed for the determination of caffeine using end-column amperometric detection with a carbon fiber microdisk array electrode at a constant potential of 1.45 V versus a saturated calomel electrode. The optimum conditions of separation and detection are 0.1 52mM NaH2PO4-0.648mM Na2HPO4 for the buffer solution, 20 kV for the separation voltage, 5 kV for the injection voltage, and 10s for the injection time. The limit of detection is 2.9 x 10(-4)mM or 1.2 fmol (signal-to-noise ratio = 2). The relative standard deviation is 0.68% for the migration time and 2.3% for the electrophoretic peak current. The method is applied to determining caffeine in human serum and a cola drink.  相似文献   

7.
M Goto  S Inagaki  Y Esaka 《Analytical sciences》2001,17(12):1383-1387
A handy and simple detection cell was constructed using a mixing joint for end-column electrochemical detection in capillary electrophoresis (CE). The cell allows for positioning of the working electrode at the end of the separation capillary without the aid of micropositioners. The design facilitates the exchange of electrodes and capillaries without the need to refabricate the entire capillary-electrode setup. The cell can be assembled in a short period of time. Alignment with the joint screw proved to be reproducible for working electrodes of copper and gold. The advantages of reduced time and low cost make the device very attractive for the routine analysis of electroactive species, such as carbohydrates and their derivatives, purine bases and nucleosides, amino acids, and catecholamines etc. by CE with electrochemical detection.  相似文献   

8.
自行设计开发了一套便于与电泳芯片集成的一体式柱端安培检测池系统.该系统由整块透明有机玻璃精密加工而成,包括电泳芯片支架和安培检测池两部分,芯片可通过芯片插槽和不锈钢夹具固定在芯片支架上,各种检测用电极可直接通过螺母固定在安培检测池中.以100μmol/L的DA为模式分析物,分别采用直径为100、300和500μm的铂金圆盘电极与表观直径为240μm的碳纤维电极作为工作电极均在该装置上实现了良好组装和高灵敏检测.采用碳纤维工作电极对该系统的检测参数进行了优化.测试结果表明该系统在电化学清洗程序下连续六次测定100μmol/L多巴胺的峰电流相对标准偏差为3.2%,保留时间相对标准偏差为0.5%,DA的检测限为0.4μmol/L(按照S/N=3计).该系统体积小巧,测试稳定,检测灵敏度较高,工作电极更换方便,适合作为芯片电泳柱端安培检测通用平台.  相似文献   

9.
A set of integrated end-column amperometric detection system has been developed,onto which an electrophoresis microchip can be conveniently integrated.Finely machined by a piece of transparent organic glass,the system consists of an electrophoresis microchip platform and an amperometric detection reservoir,in which the microchip can be fixed onto the platform by microchip grooves and with stainless steel fixture.Each detection electrode can be directly fixed in the amperometric detection reservoir by screws...  相似文献   

10.
《Electrophoresis》2018,39(14):1754-1762
A novel and fully automated sequential injection analysis manifold coupled to a capillary electrophoresis apparatus with amperometric detection, is described. The sequential injection manifold was isolated from the high voltage by inserting an air plug into the circuit. Small buffer reservoirs were used to avoid the need to pump fresh buffer to the interface during the electrophoretic separation. No decoupling device was used to mitigate the interference from the high voltage electric field, instead the potential shift induced by the separation voltage, was accounted for. The new hydrodynamic injection method presented is based on the overpressure created in the circuit when a pinch valve is closed for a predetermined time. The injection method yields RSD values of peak height and area below 2.55 and 1.82%, respectively, at different durations of valve closure (n = 5). The capillary and working electrode alignment was achieved by adapting a commercial available capillary union. When the electrode was replaced, the alignment method proved to be very reliable, yielding RSD values of peak height and area lower than 2.64 and 2.08%, respectively (n = 8). Using this system with a gold microelectrode, dopamine, and epinephrine could be quantified within the concentration range of 1–500 μM and detected at a concentration of 0.3 μM. The methods here presented could be applied for the development of new capillary electrophoresis systems with amperometric detection and/or to the design of fully automated systems for online process monitoring purposes.  相似文献   

11.
Chen C  Teng W  Hahn JH 《Electrophoresis》2011,32(8):838-843
A nanoband electrode detector integrated with a dual-channel polydimethylsiloxane microchip is proposed for in-channel amperometric detection in microchip capillary electrophoresis. Gold nanoband electrodes, which were fabricated on SU-8 substrates with a 100-nm-width gold layer, were introduced into the dual-channel microchip to be an electrochemical detector. Due to the nano-sized width of the detector, the noise of the amperometric detection was significantly reduced, and a high separation resolution was achieved for monitoring the analytes. The detection sensitivity of the system was improved by high signal-to-noise ratio, and a low detection limit on microchip was obtained for p-aminophenol (2.09 nM). Because of the high resolution in measuring half-peak width, the plate number that is used to evaluate the separation efficiency was 1.5-fold higher than that using 50-μm-width electrochemical detector. The effect of sample injection time and data acquisition time on separation efficiency was investigated, and an attractive separation efficiency was achieved with a plate number up to 17,500.  相似文献   

12.
Enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were determined by capillary zone electrophoresis (CZE) with end-column amperometric detection. The effect of several factors, such as pH and concentration of running buffer solution, separation voltage, injection time, and working potential, on CZE were investigated to establish the optimal conditions of separation and detection. Under a given set of conditions (pH 8.00 phosphate buffer solution (20 mmol/L); +0.95 V for the working potential; 18 kV for the separation voltage; sample injection at 18 kV for 10 s), the compounds investigated can be well separated and detected within 8 min. Excellent linearity was observed between peak currents and concentration of analytes in the range from 0.034 to 70.0 mg/kg for these two compounds. The detection limits (S/N= 3) for enrofloxacin and ciprofloxacin were 13.68 mg/kg and 14.35 mg/kg, respectively, which were about 7-fold lower than the maximum residue limits (MRLs) established by the European Union. A simple sample pretreatment method was developed and proved to be effective in obtaining good recoveries and short analysis time. The developed CE-AD method was simpler, faster, and less cost intensive than other reported methods, and allows the determination of ENR and its metabolite CIP in contaminated eel liver samples and other animal tissue samples at the required maximum residue limits.  相似文献   

13.
Indirect chemiluminescence (ICL) detection for capillary electrophoresis (CE) of monoamines and catechol using luminol-K3 [Fe(CN)6] system was described. A strong and stable background chemiluminescence (CL) signal can be generated by luminol-K3 [Fe(CN)6] reaction. Based on the principle of that some phenolic compounds may be oxidized in the presence of K3 [Fe(CN)6], quenching effect of catecholamines for luminol-K3[Fe(CN)6] CL reaction results in a quantifiable decrease in the background signal. The conditions for CE separation and the CL detection for four standard catecholamines were systematically investigated using a homemade CE-ICL system. Under the optimum conditions, the detection limits of dopamine (DA), epinephrine (EP), norepinephrine (NE) and catechol (CA) were determined to be 0.18 mciroM 0.39 microM 0.48 microM and 0.09 microM, respectively. It also has been successfully applied to analyze seven pharmaceutical samples and seven human urine samples.  相似文献   

14.
Chemiluminescence (CL) offers a sensitive detection method for capillary electrophoresis (CE), but the implementation of CE–CL is usually under compromised operating conditions for CE, such as the prerequisite of extreme pH buffer for optimal CL reaction at the capillary outlet. This has sometimes significantly deteriorated the separation of CE. In this study, the development of a new interface makes it possible to optimize the operating conditions for CE separation and CL detection independently. The interface consists of an on-column fracture being installed in a reservoir near the capillary end to create an electrical connection and also serve as reagent addition entrance. The capillary terminal is inserted into an end-column reservoir for CL reaction and detection. In this arrangement, the applied electric field has been decoupled from the CL detection, which is proved to effectively improve CE's performance by allowing the use of optimal CE buffers. At the same time, it enables the optimization of CL detection independently. The applicability of this interface was evaluated by using acridinium ester (AE) and luminol systems. For AE system, the interfering products of CL reagent (OH, HO2) have been prevented, and the pH range of CE buffer can be independent to the optimal pH value of AE CL reaction, which is usually below 3. The AE was detected using running buffer at pH 8.7, giving a detection limit of 0.1 nM (S/N = 3), and the theoretical plate numbers is as high as 56 000. The on-column fracture based configuration is simple, sensitive and easy to implement.  相似文献   

15.
Cao W  Liu J  Yang X  Wang E 《Electrophoresis》2002,23(21):3683-3691
A new end-column electrochemiluminescence (ECL) detection technique coupling to capillary electrophoresis (CE) is characterized. A 300 microm diameter Pt working electrode was used to directly couple with a 75 microm inner diameter separation capillary without an electric field decoupler. The hydrodynamic cyclic voltammogram (CV) of Ru(bpy) 3 2+ showed that electrophoretic current did not affect the ECL reaction. The presence of high-voltage (HV) field only resulted in the shift of the ECL detection potential. The distance of capillary to electrode was an important parameter for optimizing detection performance as it determined the characteristics of mass transport toward the electrode and the actual concentration of Ru(bpy) 3 2+ in the detection region. The optimum distance of capillary to electrode was decided by the inner diameter of the capillary, too. For a 75 microm capillary, the working electrode should be placed away from the capillary outlet at a distance within the range of 220-260 microm. The effects of pH value of ECL solution and molecular structure of analytes on peak height and theoretical plate numbers were discussed. Using the 75 microm capillary, under the optimum conditions, the method provided a linear range for tripropylamine (TPA) between 1 x 10(-10) and 1 x 10(-5) mol/L with correlation coefficient of 0.998. The detection limit (signal-to-noise ratio S/N = 3) was 5.0 x 10(-11) mol/L. The relative standard deviation in peak height for eight consecutive injections was 5.6%. By this new technique lidocaine spiked in a urine sample was determined. The method exhibited the linear range for lidocaine from 5.0 x 10(-8) to 1.0 x 10(-5) mol/L with correlation efficient of 0.998. The limit of detection (S/N = 3) was 2.0 x 10(-8) mol/L.  相似文献   

16.
Ding SN  Xu JJ  Chen HY 《Talanta》2006,70(2):403-407
An easy and universal wall-jet configuration for microchip CE-ECL detection system was constructed and investigated in this work. Two detection modes of pre-column and post-column were applied to the above system. TPA, tramadol and lidocaine were chosen as model analytes to estimate the system in both modes. The important operational parameters such as the concentration of luminescent reagent and the distance between the separation outlet and the working electrode were optimally obtained and compared for the first time.  相似文献   

17.
Liu S  Wu X  Xie Z  Lin X  Guo L  Yan C  Chen G 《Electrophoresis》2005,26(12):2342-2350
An improved technique, pressurized capillary electrochromatography (pCEC) coupling with end-column amperometric detection (AD), was developed and used for the separation and determination of estrogens. The effects of pH value, composition of mobile phase, concentration of the surfactant sodium dodecyl sulfate (SDS) and applied voltage on separation were investigated. The electrochemical oxidation of diethylstilbestrol (DES), dienestrol (DE), and hexestrol (HEX) could be reliably monitored with a carbon electrode at 0.9 V (vs. Ag/AgCl). The pCEC analyses were performed on a capillary separation column packed with 3 microm C18 particles with an acetonitrile/water (31%: 69%) mobile phase containing Tris buffer (5 mmol/L, pH 4.5) and 4 mmol/L SDS. High voltage up to 12 kV reduced the retention time dramatically and still provided a baseline resolution. In addition, supplementary pressure prevented bubble formation and provided reliability and reproducibility of the pCEC performance. The detection limits for the three estrogens ranged from 1.2 to 2.2x10(-7) mol/L, about 10 20-fold lower than those obtained with pCEC-UV detection. To evaluate the feasibility and reliability of this system, the proposed pCEC-AD method was further demonstrated with fish muscle samples spiked with estrogens.  相似文献   

18.
介绍了一种新的毛细管电泳柱上安培检测装置。以碳纤维微电极为工作电极,在自组装的ACS-2000毛细管电泳仪上,测定了三种苯二酚的异构体:邻苯二酚、对苯二酚、间苯二酚,在20min内达到了基线分离。  相似文献   

19.
The interest in microfluidic devices has increased considerably over the past decade due to the numerous advantages of working within a miniature, microfabricated format. This review focuses on recent advances in coupling amperometric detection with microchip capillary electrophoresis (CE). Advances in electrochemical cell design, isolation of the detector from the separation field, and integration of both pre- and postseparation reaction chambers are discussed. The use of microchip CE with amperometric detection for enzyme/immunoassays, clinical and environmental assays, and the determination of neurotransmitters is described.  相似文献   

20.
Mei SR  Yao QH  Cai LS  Xing J  Xu GW  Wu CY 《Electrophoresis》2003,24(9):1411-1415
Urinary 8-hydroxy-2'-deoxyguanosine (8OHdG) is an excellent marker of oxidative DNA damage. Until now, urinary 8OHdG has been measured by high-performance liquid chromatography with electrochemical detection. A simple and sensitive method for the analysis of urinary 8OHdG by capillary electrophoresis with end-column amperometric detection has been developed in our laboratory. A single-step solid-phase extraction procedure was optimized and used for extracting 8OHdG from human urine. To improve the sensitivity of this method, a new focusing technique based on a dynamic pH junction was used. The limit of detection was 20 nM (signal-to-noise ratio S/N = 3), the linear range was 50 nM-10 microM, and the correlation coefficient was better than 0.999. The relative standard deviation (RSD) was found to be 0.57% for migration time, and 4.79% for peak current. To show the usefulness of the method, the urinary concentration of 8OHdG in nine healthy persons and ten cancer patients was determined. The urinary concentration of 8OHdG in cancer patients was significantly higher than that in healthy persons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号