首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Catalytic oxidation of water by Ru(bpy)3 3+ in the presence of Co2+ ions, well known in homogeneous solution, has been investigated in thin Nafion layers. Nafion layers on ITO electrodes were equilibrated with Ru(bpy)3 2+. Ru(bpy)3 3+ was produced by electrochemical oxidation after which the electrode was transferred into the reaction cell containing buffered Co2+ solution. The build up of Ru(bpy)3 2+ absorbance at 454 nm was followed spectrophotometrically. The reaction rate is proportional to [Ru(III)], [Co2+] and [HPO4 2-]. We found no evidence for a pH effect in the range 6–8, and no inhibition by Ru(II). A limiting rate of formation of Ru(II) is observed at high Co2+ or phosphate ion concentrations. At high local concentration of the Ru complex in the Nafion layer (~ 0.5 M), two Ru(II) formation processes are observed, their rates differ by one order, but other features (effects of [Ru(III)], [Ru(II)], [Co2+], phosphate and pH) remain unchanged. These results are in contrast with homogeneous solution where the rate of build up of Ru(II) has been previously reported to be proportional to [Ru(III)], [Co2+] and [OH-]2, and inversely proportional to [Ru(II)]. A mechanism is proposed which accounts for these observations.  相似文献   

2.
Photoselection and other spectroscopic data for [Ru(bpy)3]2+, [Ru(phen)3]2+, [Ru(bpy)(py)4]2+ and [Os(bpy)3]2+ suggest that the emitting state for the tris compounds may be localized on a single ring.  相似文献   

3.
An ITO electrode was coated by a Nafion film incorporating Ru(bpy)32+ complex as redox centers either by mixture casting method, adsorption method, or swelling method and the electrochemical reactivity of the modified electrode was determined by the in-situ spectrocyclic voltammogram (SCV) in a sodium perchlorate aqueous solution at pH 1.2. A modified Poisson statistics equation was used to estimate the charge transfer distance (Ro) between the Ru(bpy)32+ complexes. The estimated charge transfer distances for the electrodes prepared by swelling method (Ro = 1.63 nm for the electrode modified in M/W 1:10, and 1.69 nm in M/W 1:2) and adsorption method (Ro = 1.61 nm) were longer than that for mixture casting method (Ro = 1.5 nm). Based on the different procedure of Ru(bpy)32+ complex incorporation in the Nafion film, the reasons that affect the apparent charge transfer distance were discussed.  相似文献   

4.
In this paper, we describe the electrochemiluminescent (ECL) behavior of Ru(bpy)33+-incorporated clay colloids. Experimental results based on the electrochemical-quartz-crystal-microbalance (EQCM) techniques showed that Ru(bpy)33+ could be adsorbed by the clay colloids (montmorillonite K10, denoted K10). The resulting clay particles could emit light (λem 610 nm) when they were fabricated as thin films sandwiched by two conductive ITO electrodes with opposite biases. These Ru(bpy)33+-incorporated clay-modified electrodes could also emit light in aqueous oxalate solutions (pH 10) when potentials more positive than 0.9 V vs. SCE were applied. EDTA was an effective promoter for the Ru(bpy)3 (clay)3+-oxalate ECL reaction. The resulting ECL showed a remarkable sensitivity to oxygen. A glucose optrode was thus fabricated based on the Ru(bpy)33+-incorporated K10 colloids and glucose oxidase (GOx). The ECL signals behaved as a function of [glucose], covering a range from 0.1 to 10 mM at pH 10. The detection limits reached a level of 0.1 mM at this pH.  相似文献   

5.
《Analytical letters》2012,45(15):2951-2964
ABSTRACT

The modified glassy carbon electrodes prepared by simultaneously covering with [Os(bpy)2(PVP)10Cl]+ redox polymer and Nafion film exhibited excellent electrocatalytic activity for the oxidation of dopamine (DA). Dual linear regions between 1.0x10?8-1.8x10?5 M and 1.8x10?5-4.0x10?4 M with correlation coefficients of 0.998 and 0.995, respectively, were obtained for log-log plots of catalytic current versus DA concentration. The detection limit for DA determination was ca. 5 nM with 3σ. The dual-film modified electrodes eliminated efficiently the interference from AA presence in a 1000-fold concentration ratio and showed excellent reproducibility for the determination of DA. The modified electrodes have been used to determine DA concentration with both cyclic voltammetric and chronoamperometric techniques. Electrocatalytic kinetics have been studied using a rotating disk electrode. Both the addition of Nafion film and an increase in DA concentration resulted in a decrease in the electrocatalytic rate constant. An apparent Michaelis-Menten constant of 1.3 mM and maximum catalytic current of 88μA were evaluated from the chronoamperometric measurements.  相似文献   

6.
Li Mao  Ruo Yuan  Yaqin Chai  Xia Yang 《Talanta》2010,80(5):1692-4551
An effective method for immobilization of Ru(bpy)32+ on glassy carbon electrode surface (GCE) is developed for the preparation of a novel electrochemiluminescence sensor. First of all, the positively charged Ru(bpy)32+ is modified on the surface of negatively charged gold nanoparticles (nano-Au) via the electrostatic interactions to obtain the Ru(bpy)32+/nano-Au nano-sphere (abbreviate as Ru-AuNPs). Subsequently, the large amount of Ru-AuNPs are immobilized on the multi-wall carbon nanotubes (MWCNTs)-Nafion homogeneous composite coated GCE by dual interaction: firstly, the Nafion, a kind of typical cation-exchange membrane, can absorb the Ru-AuNPs as the enrichment of cation Ru(bpy)32+ on the Ru-AuNPs surface; secondly, the employment of carboxylic MWCNTs in the Nafion film can also chemosorb the Ru(bpy)32+ cation on the Ru-AuNPs surface to increase the carrier content. At the same time, the experiment confirms that the enhancement of the ECL intensity on the sensor is attributed to following reasons. One hand, the employment of MWCNTs in the Nafion film enlarged the electro-active surface areas to benefit the contact between the signal probe on the composite film and coreactant used as reinforcing agent. On the other hand, the nano-materials of MWCNTs and nano-Au also improve the conductivity of the assembled film to increase the quantity of excited state of Ru(bpy)32+ in the unit time under the electrochemical condition and finally cause better properties in luminescence. In the experiment, the influence of the coreactant tripropylamine (TPA) on proposed ECL sensor is investigated. The logarithm of ECL intensity is proportional to the logarithm of TPA concentration on the range of 4 × 10−10 M to 2.8 × 10−6 M and 2.8 × 10−6 M to 0.71 × 10−3 M. After optimizing these conditions, the ECL sensor with TPA as coreactant is employed to detect a kind of alkaloid medicine, Matrine, for evaluating the practical application in the medicine analysis. The present sensor with TPA as coreactant shows the good response to the medicine concentration of the Matrine from 2.0 × 10−6 M to 6.0 × 10−3 M, which is used to detect the Matrine concentration in the Matrine injection.  相似文献   

7.
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)32+ immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.  相似文献   

8.
In this paper the strong electrochemiluminescence (ECL) nanoparticles have been prepared based on the anionic polyelectrolyte sodium polyacrylate (PAA)-ECL enhancement for Ru(bpy)32+, which were loaded by the carrier of SiO2 nanoparticle. There were two kinds of Ru(bpy)32+ for the as-prepared nanoparticles, the doped one and the exchanged one. The former was loaded inside the ECL nanoparticles by doping, in a form of ion-pair macromolecules PAA–Ru(bpy)32+. The corresponding ECL was enhanced about 2 times owing to the doping increase of Ru(bpy)32+. The latter was loaded on the PAA-doped Nafion membrane by ion exchange. The corresponding ECL was enhanced about 3 times owing to the ion-exchanging increase of Ru(bpy)32+. At the same time, ECL intensity of the doped-inside Ru(bpy)32+ was further enhanced 13 times because polyelectrolyte PAA in the doped membrane could obviously enhance electron transfer between the doped Ru(bpy)32+ and the working electrode. Furthermore, based on hydrophobic regions of the doped membrane antibody labeling could be easily realized by the as-prepared nanoparticles and then a high sensitive ECL immunoassay for HBsAg was developed. The linear range was between 1.0 and 100 pg mL−1 (R2 = 0.9912). The detection limit could be as low as 0.11 pg mL−1 (signal-to-noise ratio = 3).  相似文献   

9.
Reductive electrocrystallization at a constant current density (11.0–11.5 μA/cm2) of millimolar solutions of [M(bpy)3](PF6)2, where M = Fe, Ru, or Os, and bpy = 2,2′-bipyridine in acetonitrile containing 0.1M Bu4NPF6 results in the formation of dark crystals on the Pt cathode. The crystals grow as long, thin, and shiny needles having a hexagonal cross section of 0.1–0.5 mm in diameter. Combustion microanalyses results are consistent with the composition for [Fe(bpy)3], [Ru(bpy)3], and [Os(bpy)3]. In addition, the chromophores are conserved, as confirmed by recording both the electronic and the 1H-NMR spectra after reoxidation of the electrocrystals in humid air. The spectra are identical to those for authentic samples of [Fe(bpy)3]2+, [Ru(bpy)3]2+, and [Os(bpy)3]2+. A ratio of 2.0 ± 0.1 e?/molecule is observed upon completion of the controlled potential electrolysis of a solution of [M(bpy)3]2+, which results in the precipitation of a dark solid and the almost complete fading of the color of the original solution. Unexpectedly, the crystals do not exhibit an ESR signal. These data indicate the formation of novel materials, crystalline [Fe(bpy)3], [Ru(bpy)3], and [Os(bpy)3].  相似文献   

10.
赵丽  陶颖  陈曦 《化学学报》2006,64(4):320-324
通过电化学循环伏安法和电致化学发光方法, 研究了Ru(bpy)32+在玻碳电极上的吸附, 研究结果表明, Ru(bpy)32+的浓度和与玻碳材料接触的时间, 直接影响了Ru(bpy)32+在玻碳上的吸附. 还考察了吸附的 在玻碳电极上被氧化后脱附的情况.  相似文献   

11.
An ITO electrode modified with a hybrid film of chiral metal complex (Λ-[Os(phen)3]2+) and a clay (montmorillonite) has been prepared for the purpose of chiral sensing. As a first step, a floating monolayer of amphiphilic Os(II) complex, [Os(phen)2(dC18bpy)](ClO4)2 (phen=1,10-phenanthroline, dC18bpy=4,4-dioctadecyl-2,2-bipyridyl), was formed on an aqueous dispersion of sodium montmorillonite. The monolayer acted as an organic part for the hybridization of clay particles in an aqueous phase. The hybrid film of clay and amphiphilic metal complex was transferred onto an indium tin oxide (ITO) substrate by the vertical dipping method. The next step was to immerse the electrode in chloroform, during which the amphiphilic Os(II) complex was removed from the clay surface. Thereafter the electrode was immersed in an aqueous solution of 0.5 mM Λ-[Os(phen)3](ClO4)2 and rinsed with water. Cyclic voltammetric measurements were performed at each step of the above procedures. When the observed curves were simulated on the basis of a double-layered modified electrode, the electron transfer rate constant (k1) for Λ-[Os(phen)3]2+/Λ-[Os(phen)3]3+ was determined to be 0.25 s−1. This OsII/OsIII redox couple was found to mediate the electrochemical oxidation of chiral 1,1-2-binaphthol in a stereoselective way: i.e., the S-isomer was oxidized at a 1.4 times higher rate than the R-isomer.  相似文献   

12.
The absolute configuration of (?)D-Ru(bpy)3(ClO4)2 has been determined to be the right-hand screw configuration Δ. CD spectra of M(bpy)2+3 (M = Fe, Ru, Os) doped in a uniaxial host. Lattice lead to a new assignment of CD bands in the MLCT region. The CD arises from intrinsically allowed electronic and magnetic transition dipole moments, the latter coming from metal-centered transitions.  相似文献   

13.
A highly sensitive and stable tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor was developed based on carbon nanotube (CNT) dispersed in mesoporous composite films of sol-gel titania and perfluorosulfonated ionomer (Nafion). Single-wall (SWCNT) and multi-wall carbon nanotubes (MWCNT) can be easily dispersed in the titania-Nafion composite solution. The hydrophobic CNT in the titania-Nafion composite films coated on a glassy carbon electrode certainly increased the amount of Ru(bpy)32+ immobilized in the ECL sensor by adsorption of Ru(bpy)32+ onto CNT surface, the electrocatalytic activity towards the oxidation of hydrophobic analytes, and the electronic conductivity of the composite films. Therefore, the present ECL sensor based on the CNT-titania-Nafion showed improved ECL sensitivity for tripropylamine (TPA) compared to the ECL sensors based on both titania-Nafion composite films without CNT and pure Nafion films. The present Ru(bpy)32+ ECL sensor based on the MWCNT-titania--Nafion composite gave a linear response (R2 = 0.999) for TPA concentration from 50 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 10 nM while the ECL sensors based on titania-Nafion composite without MWCNT, pure Nafion films, and MWCNT-Nafion composite gave a detection limit of 0.1 μM, 1 μM, and 50 nM, respectively. The present ECL sensor showed outstanding long-term stability (no signal loss for 4 months).  相似文献   

14.
This work reports an electrochemical sensing framework for nicotine determination based on glassy carbon electrode (GC) immobilized with Fe(bpy)32+ (where bpy is 2,2’-bipyridyl) supported by Nafion and multi-walled carbon nanotubes (Nf-MWCNTs). Fe(bpy)32+ immobilized Nf-MWCNTs modified GC (GC/Nf-MWCNTs/Fe(bpy)32+) manifests stable redox peaks, characteristics of Fe(bpy)32+. The GC/Nf-MWCNTs/Fe(bpy)32+ exhibits effective electrochemical oxidation of nicotine, diminishing the overpotential relative to GC/Nf-MWCNTs. The limit of detection is 0.1 μM (experimentally observed) with two different linear calibration ranges between 0.1 to 600 μM and 600 to 3000 μM. Electrocatalytic responses observed at GC/Nf-MWCNTs/Fe(bpy)32+ indicate superior performance for nicotine determination with acceptable selectivity, stability, and reproducibility. Additionally, the nicotine present in real samples such as beedi and tobacco are also analyzed with satisfactory recovery percentages.  相似文献   

15.
Changes in pH have been used to shift the band-edge positions of n-type ZnO electrodes relative to solution-based electron acceptors having pH-independent redox potentials. Differential capacitance vs. potential and current density vs. potential measurements using [Co(bpy)3]3+/2+ and [Ru(bpy)2(MeIm)2]3+/2+ (where bpy = 2,2′-bipyridyl and MeIm = 1-methyl-imidazole) allowed investigation of the pH-induced driving-force dependence of the interfacial electron-transfer rate in the normal and inverted regions of electron transfer, respectively. All rate processes were observed to be kinetically first-order in the concentration of electrons at the ZnO surface and first-order in the concentration of dissolved redox acceptors. Measurements using [Co(bpy)3]3+/2+, which has a low driving force and a high reorganization energy in contact with ZnO electrodes, and measurements of [Ru(bpy)2(MeIm)2]3+/2+, which has a high driving force and a low reorganization energy in contact with ZnO electrodes, allowed for the evaluation of both the normal and inverted regions of interfacial electron-transfer processes, respectively. The rate constant at optimum exoergicity was observed to be approximately 5 × 10−17 cm4 s−1. The rate constant vs. driving-force dependence at n-type ZnO electrodes exhibited both normal and inverted regions, and the data were well-fitted by parabolas generated using classical electron-transfer theory.  相似文献   

16.
Lin Z  Chen G 《Talanta》2006,70(1):111-115
A multi-wall carbon nanotube (MWNT)/Nafion composite film-modified electrode was developed in this paper, and its chemical and electrochemiluminescent (ECL) behavior of tris(2,2′-bipyridyl)ruthenium (Ru(bpy)32+) on this electrode has been investigated in detail. It has been also found that some carbamates were able to enhance the ECL intensity of Ru(bpy)32+ greatly at this modified electrode. Based on which, a sensitive and simple method for determination of pirimicarb, methomyl, aldicarb and carbofuran were developed, and the proposed method has been applied to determine the carbamates in the nature water.  相似文献   

17.
Brilliant blue FCF‐modified glassy carbon electrodes have been prepared by cycling the Nafion (or poly(diallyldimethylammonium chloride) (PDDAC)) coated electrodes repeatedly 15 cycles in brilliant blue FCF (BB FCF) dye solution. The BB FCF molecules are incorporated into Nafion coating by cycling the film‐covered electrode between +0.3 to 1.2 V (vs. Ag/AgCl) in pH 1.5 BB FCF solution while PDDAC‐coated electrode cycled between 0 to ?1.0 V (vs. Ag/AgCl) in pH 6.5 BB FCF solution to immobilize the dye. Electrostatic interaction between dye molecule and PDDAC was predominant in PDDAC coating whereas immobilization of dye in Nafion film attributed to the combined effect of electrostatic and hydrophobic interactions. The voltammetric features of BB FCF‐modified electrodes resemble that of surface‐confined redox couples. The peak potentials of BB FCF‐incorporated PDDAC‐coated electrode were shifted to more positive potential region with decreasing pH of contacting solution. BB FCF‐modified electrodes showed electrocatalytic activity towards reduction of oxygen and oxidation of L ‐cysteine with significant decease of overvoltage compared to unmodified electrode. The BB FCF‐modified Nafion‐coated electrode was tested for its analytical applications toward determination of L ‐cysteine. The linear range of calibration plot at BB FCF‐modified Nafion‐coated electrode is 10 to 100 μM, which coincides with L ‐cysteine levels in biological fluids. Sensitivity and detection limit of the electrode are 111 nA μM?1 and 0.5 μM, respectively.  相似文献   

18.
An electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)32+, but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)32+ into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 × 10−7 to 1 × 10−4 M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT. The ECL sensor keeps over 80% and 85% activity towards 0.1 mM TPA after being stored in air and in 0.1 M pH 7.5 phosphate buffer solution (PBS) for a month, respectively. The long-term stability of the modified electrode is better than electrodes modified with Nafion, Nafion-silica, Nafion-titania, or sol-gel films containing Ru(bpy)32+. Furthermore, the ECL sensor was successfully applied to the selective and sensitive determination of oxalate in urine samples.  相似文献   

19.
New spectroscopic absorption and luminescence data for the ions M(bpy)2+3 (M = Fe, Ru, Os) provide the basis for a theoretical model of the electronic structure of these ions. An important aspect of the model is the essential localization of the triplet states, in contrast to the singlet states which are delocalized. The model accounts very well for the new and existing spectroscopic data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号