首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caesium fluoride combined with perfluoro-1-azacyclohexene in acetonitrile to yield perfluoro-1-azacyclohex-1-ylcaesium (1), which was characterised by 19F n.m.r. spectroscopy and by treatment with iodomethane to give 2,2,3,3,4,4,5,5,6,6-decafluoro-1-methyl-1-azacyclohexane (2). Attempts to derivatize the caesium salt with chlorotrimethylsilane provided fluorotrimethylsilane, perfluoro-[1-(1-azacyclohex-1-en-2-yl)-1-azacyclohexane] (4), and 2-chloro-3,3,4,4,5,5,6,6-octafluoro-1-azacyclohexene (5); information on the course of this reaction was obtained through experiments in which perfluoro-1-azacyclohexene was shown to undergo conversion into its chloro-analogue (5) and its dimer (4) via treatment with chlorotrimethylsilane and fluoride ion, respectively. Aluminium chloride also converts perfluoro-1-azacyclohexene into its chloro-analogue (5).  相似文献   

2.
A homo‐dinuclear NiII complex was prepared from 2, 6‐bis(3, 5‐dimethylpyrazolyl)pyridine (Me4‐bpp) and azide ions in nonaqueous media. It was characterized by single crystal X‐ray structural analysis, IR spectroscopy, and elemental analysis. In addition, the electrochemical properties of the compound were determined with cyclic voltammetry in DMF. The title compound crystallizes in the P21/n monoclinic space group, with unit cell parameters a = 8.978(1), b = 12.459(1), c = 17.764(1) Å, ß =100.603(3)°, V = 1953.0(3) Å3, Z = 2. The Ni2+ ion has a distorted octahedral environment involving three nitrogen atoms of the Me4‐bpp ligand, two nitrogen atoms from the bridged azide group, and one nitrogen atom from the terminal azide group. The Ni···Ni distance is 3.273(5) Å.  相似文献   

3.
The thermal decomposition of sodium azide has been investigated in the temperature range 240–365°C. Three values for the activation energy, 37.0, 59.0 and 14 kcal mol?1 have been obtained depending on the temperature range of study. The mechanism of decomposition seems to involve excited azide ions (through internal conversion) and excitations. The activation energy of 14 kcal mol?1 appears to be associated with the promotion of electron in the presence of sodium metal.  相似文献   

4.
Methyl (diethoxyphosphorylmethyl)furoates are selectively hydrolyzed at the carboxy group with the equimolar amount of potassium hydroxide in ethanol. The carboxylic acids obtained by means of the consecutive treatment with ethyl chloroformate in the presence of triethylamine and sodium azide are converted into furoyl azides. 3-Furoylazides and 5-(diethoxyphosphorylmethyl)-2-furoyl azide while heating to 110°C undergo Curtius rearrangement in the corresponding isocyanates which add methanol to form stable methyl urethanes. 4-(Diethoxyphosphorylmethyl)-5-methyl-2-furoyl azide also forms stable isocyanate, but while treating this substance with methanol the process does not stop on the formation of methyl urethane. Addition of the second methanol molecule takes place, and the subsequent nucleophilic substitution and elimination of ammonia lead to O-[4-(diethoxyphosphorylmethyl)furyl-2](methyl)carbonate. 3-(Diethoxyphosphorylmethyl)-2-furoyl azide forms polymer at 100°C in toluene, but while boiling it in the 1:1 toluene-methanol mixture formation of urethane is observed spectroscopically. The latter compound also undergoes conversion to phosphorylated furyl carbonate. By means of the 1H and 31P NMR spectroscopy the intermediate products formed in the course of transformations described were traced, and on this basis probable mechanisms of addition of methanol to isocyanate and rearrangement of urethane to carbonate were suggested.  相似文献   

5.
1, 1-Difluorocyclopropa[a]naphthalene ( 1b ) is prepared in three steps from 4-bromo-1,2-dihydronaphthalene ( 7 ) via carbene addition, benzylic bromination and bidehydrohalogenation. Structural evidence for formation of 1b is based on 1H- and 19F-NMR spectroscopy. Compound 1b is stable in solution at ?30°. Upon reaction with MeOH/H+ it is converted to a 1:2 mixture of 1- and 2-methylnaphthoate ( 10 and 11 , respectively).  相似文献   

6.
The reaction between thiobenzoyl chloride S oxide 4, (R = C6H5) and the azide ion at -80° leads to the labile thiobenzoyl azide S-oxide 5, (R = C6H5) Raising the temperature to -40° initiates decomposition of the latter to benzomtrile, nitrogen, sulfur and sulfur dioxide The thermally induced process was monitored by differential thermal analysis (DTA) which yielded a maximum heat effect at -11° The derived reaction enthalpy is ΔH=?45.6 kcal mole?1 and the activation parameters are ΔH = 20.2 kcal mol?1 ΔS = 6.3 eu (at ?11°). The DTA shape index (S) and the reaction type index (M) are found to be in excellent agreement with a rate controlling first order reaction. Apart from the main peak at -11°, lack of a temperature difference signal throughout the range of measurement rules out an enthalpy-significant azide isomenzation and further suggests that decomposition takes place from a single isomer. Semi-empirical energy barrier calculations provide a rationale for the single conformer interpretation. The data are consistent either with a reaction in which N2 and SO are expelled simultaneously or with the formation of a short-lived intermediate arising from N2 loss which rapidly eliminates sulfur monoxide. Intermediate formation of thiatriazole S-oxide cannot, however, be ruled out unambiguously.Since thioazides cyclize readily to thiatriazoles, whereas thioazide S oxides are not observed to cyclize, MO calculations have been carried out for the ring closures 2→3 and 5→6 (R= H) Orbital correlation diagrams for each potential energy surface show that ring formation is “allowed” in both cases. It is suggested that the variable chemical behavior of thioazides and their S-oxides is due to disruption of aromatic character in the hypothetical thiatriazole S-oxide product.  相似文献   

7.
Magnetic fluids based on magnetite synthesized by the chemical condensation method at temperatures of 25, 40, 60, and 80°C were obtained and studied. Magnetite particles were examined by X-ray phase and X-ray fluorescence analyses and electron microscopy. The average size of the coherent scattering region of magnetite particles was 13–17 nm, depending on the synthesis temperature. Magnetic fluids were synthesized from magnetite particles obtained at 25 and 80°C, with water and octane serving as carrier fluids. The NMR method was used to determine the saturation magnetization and average magnetic moment of the particles: for water-based magnetic fluids, 2100 A m–1 and 5.7 × 10–19 A m2 at magnetite particle synthesis temperature of 25°C and 3670 A m–1 and 4.6 × 10–19 A m2 at magnetite particle synthesis temperature of 80°C; for octane-based magnetic fluids, 2250 A m–1 and 4.1 × 10–19 A m2 at magnetite particle synthesis temperature of 25°C.  相似文献   

8.
Two novel potentiometric azide membrane sensors based on the use of manganese(III)porphyrin [Mn(III)P] and cobalt(II)phthalocyanine [Co(II)Pc] ionophores dispersed in plasticized poly(vinyl chloride) PVC matrix membranes are described. Under batch mode of operation, [Mn(III)P] and [Co(II)Pc] based membrane sensors display near‐ and sub‐Nernstian responses of ?56.3 and ?48.5 mV decade?1 over the concentration ranges 1.0×10?2?2.2×10?5 and 1.0×10?2?5.1×10?5 mol L?1 azide and detection limits of 1.5×10?5 and 2.5×10?5 mol L?1, respectively. Incorporation of both membrane sensors in flow‐through tubular cell offers sensitive detectors for flow injection (FIA) determination of azide. The intrinsic characteristics of the [Mn(III)P] and [Co(II)Pc] based detectors in a low dispersion manifold show calibration slopes of ?51.2 and ?33.5 mV decade?1 for the concentration ranges of 1.0×10?5?1.0×10?2 and 1.0×10?4?1.0×10?2 mol L?1 azide and the detection limits are1.0×10?5 and 3.1×10?5 mol L?1, respectively. The detectors are used for determining azide at an input rate of 40–60 samples per hour. The responses of the sensors are stable within ±0.9 mV for at least 8 weeks and are pH independent in the range of 3.9?6.5. No interferences are caused by most common anions normally associated with azide ion.  相似文献   

9.
Bis(bis(triphenylphosphine)iminium) μ-Nitrido-bis(azidophthalocyaninato(2–)ferrate(IV)) Triiodide Diethylether Di-Solvate: Synthesis, Properties, and Crystal Structure Bis(bis(triphenylphosphine)iminium) μ-nitrido-bis(azidophthalocyaninato(2–)ferrate(IV)) triiodide is prepared as a diethylether di-solvate by substitution of μ-nitrido-bis(pyridinephthalocyaninato(2–)iron(IV)) pentaiodide with bis(triphenylphosphine)iminium azide in acetone and precipitation by slow diffusion of diethylether. The doublesalt crystallizes monoclinically in the space group C12/c1 with cell parameters: a = 34.567(9) Å, b = 20.237(9) Å, c = 21.251(5) Å, β = 119.79(2)°; Z = 4. The Fe atoms are located almost in the centre (Ct) of the (Niso)4 planes (d(Fe–Ct) = 0.080(1) Å; Niso: isoindoline N atom). The average Fe–Niso distance is 1.947(5) Å, the Fe-(μ-N) distance 1.650(1) Å. The Fe-(μ-N)–Fe skeleton is linear (177.4(4)°). Both waving pc2– ligands are in a staggered conformation (skew angle φ = 38.5(5)°). Fe coordinates linear azide (d(Fe–Nazide) = 2.152(7) Å) with an angle of 121.2(6)°. The isolated triiodide ion is almost linear (d(I–I) = 2.936(2) Å). The PNP cation obtains an hybrid conformation (∠(P–N–P) = 157.4(2)°). The asymmetrical Fe-(μ-N)–Fe stretching vibration is observed in the IR spectrum at 997 cm–1, the symmetrical one is selectively enhanced in the resonance Raman (RR) spectrum at 478 cm–1. The corresponding I–I stretching vibrations of the triiodide ion are present in the actual spectra at 134 (IR) and 115 cm–1 (RR). An IR band at 334 cm–1 is attributed to the asymmetrical Fe–Nazide stretching vibration.  相似文献   

10.
A new azido-coordinated nickel(II) complex [NiL1(N3)] (1) and a new thiocyanato-coordinated nickel(II) complex [NiL2(NCS)] (2), where L1 and L2 are the monoanionic forms of Schiff bases 2-[(2-isopropylaminoethylimino)methyl]-6-methylphenol and 2-[(2-dimethlaminoethylimino)methyl]-6-methylphenol respectively, are prepared and structurally characterized by elemental analysis, IR spectra, and single crystal X-ray crystallography. Complex 1 crystallizes in the triclinic space group P-1 with unit cell dimensions a = 8.812(2) Å, b = 9.433(3) Å, c = 9.488(2) Å, α = 81.933(2)°, β = 69.925(2)°, γ = 84.591(2)°, V = 732.5(3) Å3, Z = 2, R 1 = 0.0291, and wR 2 = 0.0734. Complex 2 crystallizes in the monoclinic space group P21/n with unit cell dimensions a = 7.4497(4) Å, b = 6.1933(3) Å, c = 31.5126(18) Å, β = 92.484(2)°, V = 1452.57(13) Å3, Z = 4, R 1 = 0.0307, and wR 2 = 0.0668. The Ni atom in each of the complexes is coordinated by three donor atoms of the Schiff base ligand and by one N atom of the azide or thiocyanate ligand, forming a square planar geometry. The azide and thiocyanate anions readily coordinate to the complexes as secondary ligands.  相似文献   

11.
The quasi‐living cationic copolymerization of 3,3‐bis(chloromethyl)oxetane (BCMO) and ε‐caprolactone (ε‐CL), using boron trifluoride etherate as catalyst and 1,4‐butanediol as coinitiator, was investigated in methylene chloride at 0°C. The resulting hydroxyl‐ended copolymers exhibit a narrow molecular weight polydispersity and a functionality of about 2. The reactivity ratios of BCMO (0.26) and ε‐CL (0.47), and the Tg of the copolymers, indicate their statistical character. The synthesis of poly(3,3‐bis(azidomethyl)oxetane‐co‐ε‐caprolactone) from poly(BCMO‐co‐ε‐CL) via the substitution of the chlorine atoms by azide groups, using sodium azide in DMSO at 110°C, occurs without any degradation, but the copolymers decompose at about 240°C. All polymers were characterized by vapor pressure osmometry or steric exclusion chromatography, 1H‐NMR and FTIR spectroscopies, and DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1027–1039, 1999  相似文献   

12.
Several 5-substituted 1H-tetrazoles were prepared in water or isopropanol/water mixtures using microwave heating. Good yields were obtained for the [2 + 3] cycloaddition of sodium azide with aryl nitriles, aliphatic nitriles, and vinyl nitriles when catalyzed by scandium triflate. The reactions were typically heated for 1 h at 160 °C in a 3:1 isopropanol/water mixture to obtain the best yields.  相似文献   

13.
CONCAR  D.  MOORE  G.R.  WILLIAMS  R.J.P. 《中国化学》1992,10(1):40-44
Equilibrium constants for the binding of azide to ferri-cytochrome c at temperature rangeof 305—325 K were determined at pH=7 by using ~1H double resonance method.Thermodynamicvalues(⊿H~o=-34.5 kJ/mol,⊿S~o=-100 J/mol)were obtained from van't Hoff's relation andwere compared with those for azide binding to other ferric hemeproteins.The reason of loweraffinity of cytochrome c for azide was discussed.  相似文献   

14.
1H‐1,2,3‐triazoles can be prepared in good yield by the reaction of terminal alkyne and sodium azide in the presence of cuprous chloride at a temperature higher than 70°C. The alkyne is unactivated and the reaction has to be carried out under inert gas. At room temperature, the reaction first gives a Cu(I)‐azide complex which is converted to a Cu‐alkyne complex when the temperature is raised to higher than 70°C. The reaction of Cu(I)‐alkyne complex and azide ion dissociated from or coordinated to Cu(I) then gives 1H‐1,2,3‐triazoles.  相似文献   

15.
A novel low‐temperature curing polytriazole resin was prepared from a triazide and a tetraalkyne and characterized. The resin can be cured at 70°C. The glass transition temperature Tg and thermal decomposition temperature Td5 of the cured resin with the molar ratio of azide to alkyne group [A]/[B] = 1.0:1.0 reached 324 and 355°C, respectively. The study on the curing kinetics of the resin shows that the apparent activation energy of the curing reaction is 93 kJ mol?1. The flexural strength of the cured resin reached 137.6 MPa at room temperature and 102.6 MPa at 185°C. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In the title complex, [Cu(N3)2(C15H26N2)], the Cu atom is surrounded by the two N atoms of the chelating (?)‐α‐isosparteine ligand and another two N atoms from the two azide anions, forming a distorted CuN4 tetrahedron. The two azide anions are terminally bound to the CuII atom, and the dihedral angle between the Nsparteine—Cu—Nsparteine and Nazide—Cu—Nazide planes is 50.0 (2)°.  相似文献   

17.
The CuI‐catalysed 1,3‐dipolar cycloaddition of an azide and a terminal alkyne is becoming an increasingly popular tool for synthetic chemists. This is the most representative of the so‐called `click reactions' and it is used to generate 1,4‐disubstituted triazoles in high yield. During studies on such cycloaddition reactions, a reduced reactivity of an α‐glucosyl azide with respect to the corresponding β‐anomer was observed. With the aim of understanding this phenomenon, the structure of the title compound, C14H19N3O9, has been determined at 140 K. The glucopyranosyl ring appears in a regular 4C1 chair conformation with all the substituents in equatorial positions, except for the anomeric azide group, which adopts an axial orientation. The observed bond lengths are consistent with a strong anomeric effect, which is reflected in a change in dipolar character and hence reduced reactivity of the α‐glucosyl azide.  相似文献   

18.
Irradiation of silver azide at λ = 365 nm (I > 1 × 1015 quantum cm?2 s?1) in a vacuum (1 × 10?5 Pa) leads to an increase in the rate of photolysis and photoinduced current and the appearance of a new long-wave region of spectral sensitivity. The photolysis products, silver metal and gaseous nitrogen, are formed in a stoichiometric ratio on the surface of silver azide. The rate constants for silver azide photolysis were determined. Measurements of contact potential difference, current—voltage characteristics, photoelectromotive force, and photocurrent showed that AgN3(A1)—Ag (photolysis product) microheterogeneous systems were formed in silver azide photolysis. The limiting stage of silver azide photolysis is the diffusion of interstitial silver cations to the (TnAgm)0 neutral center.  相似文献   

19.
The reaction behavior of NaN3, AgN3, and Me3SiN3 towards FNO2, CINO2, NO2SbF6, and NO2BF4 was investigated. At -30°C or below in a solvent-free system sodium azide did not react with CINO2, NO2BF4, or NO2SbF6. Below -30°C silver azide did not react either with neat C1NO2. Treatment of Me3SiN3 with pure C1NO2 led to the formation of C1N3, N2O, and Me3SiOSiMe3. A mechanism for this reaction has been proposed. Pure chlorine azide was isolated by fractional condensation and identified by its low-temperature Raman spectrum (liquid state). The reaction of Cp2Ti(N3)2 with C1NO2 also yielded C1N3 as the only azide-containing reaction product. Treatment of FNO2 with NaN3 at temperatures as low as -78°C always ended in an explosion which was probably due to the formation of FN3 as one of the reaction products. The reaction of NO2SbF6 with NaN3 in liquid CO2 (-55°C· T· -35°C) as the solvent afforded a new azide species which was stable at low temperature in solution only and was investigated by means of low-temperature Raman spectroscopy. The obtained vibrational data give strong evidence for the presence of tetranitrogen dioxide, N4O2, which can be regarded as nitryl azide (NO2N3). The structure and vibrational frequencies of N4O2 were computed ab initio at correlated level (MP2/6-31 + G*). In liquid xenon (-100°C· T· -60°C) NaN3 did not react with NO2SbF6. A previous literature report on the preparation of N4O2 could not be established.  相似文献   

20.
Bismuth chloride was used to catalyze the [2 + 3] cycloaddition between sodium azide with aryl nitriles, aliphatic nitriles, and vinyl nitriles. A number of 5-substituted 1H-tetrazoles were synthesized in water or isopropanol/water mixtures using microwave heating. Good yields were obtained for these reactions when heated for 1 h at 120–160 °C in a 3:1 isopropanol/water mixture. A few of the less reactive nitriles required longer reaction times for good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号