首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The third order rate coefficients for the addition reaction of Cl with NO2, Cl + NO2 + M → ClNO2 (ClONO) + M; k1, were measured to be k1(He) = (7.5 ± 1.1) × 10?31 cm6 molecule?2 s?1 and k1(N2) = (16.6 ± 3.0) × 10?31 cm6 molecule?2 s?1 at 298 K using the flash photolysis-resonance fluorescence method. The pressure range of the study was 15 to 500 torr He and 19 to 200 torr N2. The temperature dependence of the third order rate coefficients were also measured between 240 and 350 K. The 298 K results are compared with those from previous low pressure studies.  相似文献   

2.
The oxidation kinetics of NO by O2 in aqueous solution was observed using a stopped flow apparatus. The kinetics follows a third order rate law of the form k · [NO]2 · [O2] in analogy to gas-phase results. The rate constant at 296 K was measured as (6.4 ± 0.8) · 106 M?2 s?1 with an activation energy of 2.3 kcal/mol and a preexponential factor of (4.0 ± 0.5) · 108 M?2 s?1. The rate constant displays a very slight pH dependence corresponding to less than a factor of three over the range 0 to 12. The system NO/O2 in aqueous solution is an efficient nitrosating agent which has been tested using phenol as a substrate over the pH range 0 to 12. The rate limiting step leading to formation of 4-nitrosophenol is the formation of the reactive intermediate whose competitive hydrolysis yields HONO or NO2?. The absence of NO3? in the autoxidation of NO, the exclusive presence of NO2? as a product of the nitrosation reaction of phenol, and the kinetic results of the N3? trapping experiments point towards N2O3 as the reactive intermediate. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The reactions Br + NO2 + M → BrNO2 + M (1) and I + NO2 + M → INO2 + M (2) have been studied at low pressure (0.6-2.2 torr) at room temperature and with helium as the third body by the discharge-flow technique with EPR and mass spectrometric analysis of the species. The following third order rate constants were found k1(0) = (3.7 ± 0.7) × 10?31 and k2(0) = (0.95 ± 0.35) × 10?31 (units are cm6 molecule?2 s?1). The secondary reactions X + XNO2X2 + NO2 (X = Br, I) have been studied by mass spectrometry and their rate constants have been estimated from product analysis and computer modeling.  相似文献   

4.
Third order rate constants have been determined for the reaction O + SO2 + N2O → SO3 + N2O over the temperature range 299–392 K using a modulation technique. The Arrhenius expression obtained is k2N2O = 3.32 × 1010 exp[?(2000±400)/RT] liter2 mole?2 s?1. This temperature dependence is in good agreement with recent flash photolysis-resonance fluorescence measurements using N2 as a third body.  相似文献   

5.
The alternating copolymerization of cyclopentene and sulfur dioxide was studied. It takes place spontaneously at ?15°C. The rate of copolymerization in toluene was found to be proportional to [CPT]3 and [SO2]2 with the overall activation energy of 16.5 kcal/mole. Terpolymerizations with eight different third monomers were carried out to examine the character and behavior of the copolymerization system of CPT and SO2. However, the polymerizations with styrene and methyl methacrylate as the third monomers were found to be extraordinary, in that all the three components are not incorporated into the polymer chain.  相似文献   

6.
The autoxidation of two cuprous complexes, Cu(NH3)2+ and Cu(imidazole)2+, has been studied by following the oxygen consumption with a coated oxygen sensor, and the formation of CuII by means of a stopped flow technique. The reaction was found to be of third order being proportional to the concentrations of CuI, oxygen, and free ligand. pH variation was without effect in the range studied. The rate constants are kIM = 5,5 ·103 12· Mol?2·s?1 for imidazole, and kNH3 = 1,6·104 12· Mol?2· s?1 for NH3 as ligand, resp. An apparent activation energy of less than 2 Kcal/mole has been found for the autoxidation of the cuprous imidazole complex. This can be explained by the assumption of a rapidly playing equilibrium proceeding the rate determining step.  相似文献   

7.
Absolute rate constants for the reaction of OH with CO were determined at 296 ± 2 K, with 50 torr of He and 0–350 torr of SF6. The rate constant was found to change from ≈1.0 × 1011 to ≈1.9 × 1011 cm3 mol?1 s?1 depending on the pressure and nature of the third body M, in agreement with our earlier results and with the three studies by Heicklen, Cox, Calvert, and their co-workers. However, it is not possible, at present, to attribute the effect with certainty to any particular cause.  相似文献   

8.
The ion-molecule reaction CH3+ + H2O has been studied with a drift tube apparatus. The first step of the reaction was found to have a third-order rate constant with a negative temperature coefficient: kHe(3) = 1.3 × 10?26 (T/300)?3.3 and Kw(3) = 1 × 10?24 (T/300)?0.85. Both water molecules and helium atoms act as stabilizing third bodies.  相似文献   

9.
Using the technique of molecular modulation spectrometry, we have measured directly the rate constants of several reactions involved in the oxidation of methyl radicals at room temperature: k1 is in the fall-off pressure regime at our experimental pressures (20–760 torr) where the order lies between second and third and we obtain an estimate for the second-orderlimit of (1.2 ± 0.6) × 10?12 cm3/molec · sec, together with third-order rate constants of (3.1 ± 0.8) × 10?31 cm6/molec2 · sec with N2 as third body and (1.5 ± 0.8) × 10?30 with neopentane; we cannot differentiate between k2a and k2c and we conclude k2a + (k2c) = (3.05 ± 0.8) × 10?13 cm3/molec · sec and k2b = (1.6 ± 0.4) × 10?13 cm3/molec · sec; k3 = (6.0 ± 1.0) × 10?11 cm3/molec · sec.  相似文献   

10.
The relative rate technique has been used to determine the rate constants for the reactions Cl + CH3OCHCl2 → products and Cl + CH3OCH2CH2Cl → products. Experiments were carried out at 298 ± 2 K and atmospheric pressure using nitrogen as the bath gas. The decay rates of the organic species were measured relative to those of 1,2‐dichloroethane, acetone, and ethane. Using rate constants of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1, (2.4 ± 0.4) × 10?12 cm3 molecule?1 s?1, and (5.9 ± 0.6) × 10?11 cm3 molecule?1 s?1 for the reactions of Cl atoms with 1,2‐dichloroethane, acetone, and ethane respectively, the following rate coefficients were derived for the reaction of Cl atoms (in units of cm3 molecule?1 s?1) with CH3OCHCl2, k= (1.04 ± 0.30) × 10?12 and CH3OCH2CH2Cl, k= (1.11 ± 0.20) × 10?10. Errors quoted represent two σ, and include the errors due to the uncertainties in the rate constants used to place our relative measurements on an absolute basis. The rate constants obtained are compared with previous literature data and used to estimate the atmospheric lifetimes for the studied ethers. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 420–426, 2005  相似文献   

11.
The chemical reactions of SO2(3B1) molecules with cis- and trans-2-butene have been studied in gaseous mixtures at 25°C by excitation of SO2 within the SO2(3B1) → SO2(+, 1A1) ‘forbidden’ band using 3500–4100-Å light. The initial quatum yields of olefin isomerization were determined as a function of the [SO2]/[2-butene] ratio and added gases, He and O2. The kinetic treatment of these data suggests that there is formed in the SO2(3B1) quenching step with either cis- or trans-2-butene, some common intermediate, probably a triplet addition complex between SO- and olefin. It decomposes very rapidly to form the 2-butene isomers in the ratio [trans-2-butene]/[cis-2-butene] = 1.8. In another series of experiments SO2 was excited using a 3630 ± 1-Å laser pulse of short duration, and the SO2(3B1) quenching rate constants with the 2-butenes were determined from the SO2(3B1) lifetime measurements. The rate constants at 21°C are (1.29 ± 0.18) × 1011 and (1.22 ± 0.15) × 1011 l/mole·sec with cis-2-butene and trans-2-butene, respectively, as the quencher molecule. Within the experimental error these quenching constants equal those derived from the quantum yield data. Thus the rate-determining step in the isomerization reaction is suggested to be the quenching reaction, presumably the formation of the triplet SO2-2-butene addition complex. In a third series of experiments using light scattering measurements, it was found that the aerosol formation probably originates largely from SO3 and H2SO4 mist formed following the reaction SO2(3B1) + SO2 → SO3 + SO(3Σ?). Aerosol formation from photochemically excited SO2-olefin interaction is probably unimportant in these systems and must be unimportant in the atmosphere.  相似文献   

12.
Relative-rate kinetic experiments were carried-out at T = 310 ± 3 K to determine rate constant ratios for the reactions of Br atoms with C2H6(1), CH2ClBr(2) and neo-C5H12(3). Br atoms were produced by stationary photolysis of Br2 and the consumption of the reactants was determined by gas-chromatography. k 2/k 1 = 1.174 ± 0.053 and k 3/k 1 = 0.458 ± 0.027 were determined (with 1σ precision given). The rate constant ratios were resolved to absolute k 1 values, and k 1(310 K) = (2.27 ± 0.30) × 105 cm3 mol−1 s−1 was recommended. The recommended k 1 was applied in a third law analysis providing Δf H o 298(C2H5) = (122.0 ± 1.9) kJ mol−1.  相似文献   

13.
Summary Pulsed laser photolysis coupled with time-resolved UV-absorption monitoring of CH3COradicals was applied to obtain the rate constant, k1, for the reaction CH3CO+ HBr → CH3C(O)H + Br (1); k1(298 K) = (3.59 ± 0.23 (2σ))x10-12cm3molecule-1s-1. Utilization of k1in a third law procedure has provided the standard enthalpy of formation value ofDfH°298(CH3CO) = -10.04 ± 1.10 (2σ) kJ mol-1in excellent agreement with a very recent IUPAC recommendation.  相似文献   

14.
Rate coefficients of the title reaction have been measured in a high‐temperature photochemistry (HTP) reactor using Ar as the bath gas. H atoms were generated by flash photolysis of NH3 and their relative concentrations were monitored by resonance fluorescence. The data are best fitted by k(295–905 K) = 6.5 × 10?34 (T/K)0.206 exp(780K T) cm6 molecule?2 s?1, with ±2σ precision values varying from 16 to 36% and corresponding suggested accuracy levels of 29–42%. Using a literature value for the relative collision efficiencies of N2 and Ar indicates that for N2 as the third body the above rate coefficient expression should be multiplied by 1.6. This leads to good agreement with two recent near 1000 K measurements. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 374–380, 2003  相似文献   

15.
A kinetic analysis of the oxidation of semicarbazide (SEM) by the single-electron oxidant [IrCl6]2? has been carried out by stopped-flow spectrometric techniques. The reaction proved to be first order each in [IrCl6 2?] and [SEM]tot, leading to overall second-order kinetics. The variation in the observed second-order rate constant k′ with pH was explored over the pH range of 0–7.11. Spectrophotometric titration revealed a stoichiometry of Δ[IrCl6 2?]/Δ[SEM]tot = 4:1 for the redox reaction. On the basis of the rate law, the redox stoichiometry, and the rapid scan spectra, a reaction mechanism is proposed which involves parallel attacks of [IrCl6]2? on both H2NCONHNH3 + and H2NCONHNH2 as rate-determining steps, followed by several rapid reactions. The rate expression, derived from the reaction mechanism, was utilized to simulate the k′–pH profile yielding a virtually perfect fit and indicating that the reaction path involving H2NCONHNH3 + does not make a significant contribution to the overall rate. The reaction between [IrCl6]2? and H2NCONHNH2 was further studied as a function of both temperature and ionic strength. From the temperature dependence, activation parameters were obtained as: ?H 2 ?  = 34.9 ± 1.5 kJ mol?1 and ?S 2 ?  = ?78 ± 5 J K?1 mol?1. The observed ionic strength dependence suggests that the rate-determining step is between [IrCl6]2? and a neutral species of SEM. Hence, both the temperature and ionic strength dependency studies are in good agreement with the proposed reaction mechanism, in which the rate-determining step involves an outer sphere electron transfer.  相似文献   

16.
The rate constant of the reaction Cl + CH3OH (k1) has been measured in 500–950 Torr of N2 over the temperature range 291–475 K. The rate constant determination was carried out using the relative rate technique with C2H6 as the reference compound. Experiments were performed by irradiating mixtures of CH3OH, C2H6, Cl2, and N2 with UV light from a fluorescent lamp whose intensity peaked near 360 nm. The resultant temperature‐dependent rate expression is k1 = 8.6 (±1.3) × 10?11 exp[?167 (±60)/T] cm3 molecule?1 s?1. Error limits represent data scatter (2σ) in the current experiments and do not include error in the reference rate constant. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 113–116, 2010  相似文献   

17.
A cadmium complex bis(benzyltriethylammonium) bis(1,3‐dithiole‐2‐thione‐4,5‐dithiolato)‐cadmium(II) ((TEBA)2[Cd(DMIT)2]) has been synthesized and its crystal structure has been determined by means of X‐ray single‐crystal diffraction. The central cadmium(II) ion coordinates with two DMIT, which constructed a distorted tetrahedron environment. Its third‐order nonlinear optical properties have been studied using Z‐scan technique with 20 ps pulses at wavelength 1064 nm. Its third‐order nonlinear susceptibility χ(3) value was determined to be 1.24 × 10−19 m2 V−2, the figure of merit, χ(3)/α0, was estimated to be 2.64 × 10−20 m3 V−2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Propargyl (HCC CH2) and methyl radicals were produced through the 193‐nm excimer laser photolysis of mixtures of C3H3Cl/He and CH3N2CH3/He, respectively. Gas chromatographic and mass spectrometric (GC/MS) product analyses were employed to characterize and quantify the major reaction products. The rate constants for propargyl radical self‐reactions and propargyl‐methyl cross‐combination reactions were determined through kinetic modeling and comparative rate determination methods. The major products of the propargyl radical combination reaction, at room temperature and total pressure of about 6.7 kPa (50 Torr) consisted of three C6H6 isomers with 1,5‐hexadiyne(CHC CH2 CH2 CCH, about 60%); 1,2‐hexadiene‐5yne (CH2CC CH2 CCH, about 25%); and a third isomer of C6H6 (∼15%), which has not yet been, with certainty, identified as being the major products. The rate constant determination in the propargyl‐methyl mixed radical system yielded a value of (4.0 ± 0.4) × 10−11 cm3 molecule−1 s−1 for propargyl radical combination reactions and a rate constant of (1.5 ± 0.3) × 10−10 cm3 molecule−1 s−1 for propargyl‐methyl cross‐combination reactions. The products of the methyl‐propargyl cross‐combination reactions were two isomers of C4H6, 1‐butyne (about 60%) and 1,2‐butadiene (about 40%). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 118–124, 2000  相似文献   

19.
The fast flow method with laser induced fluorescence detection of CH3C(O)CH2 was employed to obtain the rate constant of k1 (298 K) = (1.83 ± 0.12 (1σ)) × 1010 cm3 mol?1 s?1 for the reaction CH3C(O)CH2 + HBr ? CH3C(O)CH3 + Br (1, ?1). The observed reduced reactivity compared with n‐alkyl or alkoxyl radicals can be attributed to the partial resonance stabilization of the acetonyl radical. An application of k1 in a third law estimation provides ΔfH(CH3C(O)CH2) values of ?24 kJ mol?1 and ?28 kJ mol?1 depending on the rate constants available for reaction ( ‐1 ) from the literature. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 32–37, 2006  相似文献   

20.
The mechanism and kinetics of energy transfer from the Xe(6s[3/2]1) resonance state to CO and CO2 molecules have been investigated by XeCl(B–X) (λmax=308 nm) fluorescence intensity measurements at stationary conditions in Xe–CCl4–M systems. Steady-state analysis of the fluorescence intensity dependence on the xenon and M pressure at constant CCl4 concentration shows that these processes occur in two- and three-body reactions: Xe(6s[3/2]10)+M→products; Xe(6s[3/2]10)+M+Xe→products. The two-body rate constants for above reactions have been found to be (0.7±0.2)×10−10 and (4.9±0.4)×10−10 cm3 s−1 for CO and CO2, respectively. The three-body rate constants have been found to be (3±1)×10−29 and (2.4±0.3)×10−28 cm6 s−1 for CO and CO2, respectively. It has been shown that the third order reaction is a very effective channel of xenon excited atoms decay at high xenon pressures (P(Xe)>50 Torr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号