首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specific HPLC method for the simultaneous determination of YM928, a novel noncompetitive AMPA receptor antagonist, and its demethylated metabolite (YM-58875) in rat, dog and monkey plasma was developed and validated. The method utilized multiple-step liquid-liquid extraction followed by a reversed-phase HPLC with UV detection at 275 nm. No interfering peaks were observed at the retention times of YM928, YM-58875 or internal standard. The validated quantitation range was 5-5000 ng/mL for both YM928 and YM-58875 when 1 mL of the plasma sample was used. The intra- and inter-day precision was less than 5.3 and 2.5% for YM928, and 3.7 and 2.3% for YM-58875, respectively. The intra- and inter-day accuracies were -8.7-5.3% and 0.7-1.9% for YM928, and -10.0-6.1% and 1.3-3.4% for YM-58875, respectively. The mean recoveries in the extraction process were 52.7-62.8%. The utility of this analytical method was demonstrated by the investigation of the pharmacokinetics of the unchanged drug and its metabolite in preclinical studies.  相似文献   

2.
A sensitive and specific bioanalytical method for quantitation of a novel antiemetic (ADR-851) in plasma and urine has been developed and validated. The drug and internal standard (metoclopramide) are extracted from the plasma matrix by solid-phase extraction on cyanopropyl bonded-phase columns. After extraction, samples are separated by isocratic reversed-phase high-performance liquid chromatography. The parent drug, internal standard and a yet unidentified metabolite are detected by fluorescence. The method requires 1.0 ml of plasma or 0.1 ml of urine and has a lower limit of quantitation of 2 ng/ml with 10.9% relative standard deviation (R.S.D.). Method linearity has been established over a 2-800 ng/ml range when 1.0 ml of plasma is used. The intra- and inter-day imprecisions for the method are typically better than 6% and 11% R.S.D., respectively, in both plasma and urine over the entire dynamic range. The pooled estimate of bias is less than 5% and attests to the excellent accuracy.  相似文献   

3.
This paper describes a sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of the novel survivin suppressant YM155, 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium, which is developed for the treatment of solid tumors. This method uses a liquid-liquid extraction from 0.25 mL of dog plasma. LC separation was carried out on a Genesis Silica column (50 mm x 3.0 mm i.d.) at a flow-rate of 0.5 mL/min. Compounds were eluted using a mobile phase of 5 mm ammonium acetate and 0.1% formic acid in water-0.1% formic acid in acetonitrile, 17:83 (v/v). MS/MS detection was carried out with an MDS-Sciex API3000 triple quadrupole mass spectrometer in positive electrospray ionization mode. The standard curve was linear from 0.05 to 50 ng/mL (r > or = 0.9968). The lower limit of quantitation was 0.05 ng/mL. Good intra- and inter-day assay precision (within 7.4% RSD) and accuracy (within +/-12.3%) were obtained. The extraction recovery was 66.2%. The method was successfully applied to preclinical pharmacokinetic studies in dogs.  相似文献   

4.
Sensitive enantioselective liquid chromatographic assays using tandem mass spectrometric detection were developed and validated for the determination of S-cetirizine (S-CZE) and R-cetirizine (R-CZE) in guinea pig plasma, brain tissue, and microdialysis samples. Enantioselective separation was achieved on an alpha1-acid glycoprotein column within 14 min for all methods. A cetirizine analog, ucb 20028, was used as internal standard. Cetirizine and the internal standard were detected by multiple reaction monitoring using transitions m/z 389.1 --> 200.9 and 396.1 --> 276.1, respectively. The samples were prepared using protein precipitation with acetonitrile. For guinea pig plasma, the assay was linear over the range 0.25-5000 ng/mL for both S-CZE and R-CZE, with a lower limit of quantification (LLOQ) of 0.25 ng/mL. For the brain tissue and microdialysis samples, the assays were linear over the range 2.5-250 ng/g and 0.25-50 ng/mL, respectively, and the LLOQ values were 2.5 ng/g and 0.25 ng/mL, respectively. The intra- and inter-day precision values were < or =7.1% and < or =12.6%, respectively, and the intra- and inter-day accuracy varied by less than +/-8.0% and +/-6.0% of the nominal value, respectively, for both enantiomers in all the matrices investigated.  相似文献   

5.
A rapid and sensitive HPLC enantioselective method with fluorescence detection was developed to determine (-)-(R) and (+)-(S) enantiomers of the metabolites of citalopram, demethyl- and didemethyl-citalopram in plasma and brain tissue. This assay involves pre-column chiral derivatization with (-)-(R)-1-(1-naphthyl)ethyl isocyanate followed by separation on a normal-phase silica column. The developed liquid-liquid extraction procedure permits quantitative determination of analytes with recoveries ranged between 81 and 88% with intra- and inter-day relative standard deviations less than 10.5%. Linearity was obtained over the concentration range 5-1000 ng/mL and 100-10,000 ng/g for spiked drug-free plasma and brain tissue, respectively, with detection limits lower than 2.1 ng/mL and 42.8 ng/g.  相似文献   

6.
A high-performance liquid chromatographic (HPLC) procedure has been developed for the quantification of L-365,260 (I), a cholecystokinin and gastrin receptor antagonist, in dog and rat plasma. The method involves liquid-liquid extraction and HPLC with ultraviolet detection. Standard curves were linear over the range 7.5-2000 ng/ml for rat and dog plasma. The method is reproducible and reliable with a detection limit of 7.5 ng/ml in biological fluids. The mean coefficients of variation for concentrations within the range of the standard curve range were 3.84 and 2.56%, respectively, for intra-day analysis and 4.48 and 4.26%, respectively, for inter-day analysis. Application of the development was successfully demonstrated by quantifying the concentration of I in both dog and rat plasma samples following an intravenous or oral dose of 5 mg/kg I.  相似文献   

7.
A sensitive and selective method for the determination of long-acting released octreotide in human plasma has been developed based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Octreotide and the internal standard, triptorelin, were precipitated from the matrix, washed with dichloromethane and subsequently separated by reversed-phase high-performance liquid chromatography (HPLC) employing a 1% formic acid/methanol gradient system. Detection was by electrospray ionization mass spectrometry in the positive ion mode using multiple-reaction monitoring. The assay was linear in the concentration range 0.0500-50.0 ng/mL with intra- and inter-day precision (as relative standard deviation) of <2.95% and <8.37%, respectively. The limit of detection was 0.0200 ng/mL. The method was applied to a pharmacokinetic study of long-acting released octreotide in healthy volunteers given an intramuscular injection containing 20 mg octreotide.  相似文献   

8.
A rapid and sensitive liquid chromatography/mass spectrometry (LC/MS) method was developed and validated for the determination of roxatidine in human plasma. Roxatidine was extracted by single liquid-liquid extraction with tert-butyl methyl ether, and the chromatographic separation was performed on a C8 column. The total analytical run time was relatively short (5 min), and the limit of assay quantification was 2 ng/mL using 0.1 mL of human plasma. Roxatidine and the internal standard, propranolol, were monitored in selected ion monitoring (SIM) mode at m/z 307.3 and 260.3, respectively. The standard curve was linear over a concentration range from 2-500 ng/mL, and the correlation coefficients were >0.999. The mean intra- and inter-day assay accuracy ranged from 103.4-108.8% and 102.3-110.0%, respectively, and the mean intra- and inter-day precision was between 3.3-8.8% and 5.3-6.2%, respectively. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers after oral administration of roxatidine acetate hydrochloride at a dose of 75 mg.  相似文献   

9.
Lee J  Seo JH  Kim DH 《The Analyst》2002,127(7):917-920
An efficient gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the determination of tizanidine in human plasma. Plasma samples were simply extracted with ethyl acetate at basic pH and the extracts were converted into trimethylsilyl (TMS) derivatives for direct separation by GC-MS with selected ion monitoring (SIM). Reaction of tizanidine with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) caused di-trimethylsilylation in the imidazoline moiety and this silylation significantly improved the chromatographic properties of the compound. The determination of tizanidine was accurate and reproducible, with a limit of quantitation of 0.5 ng m(-1) in plasma. The calibration curve for tizanidine was linear (r2 = 0.999) over the concentration range 0.5-10.0 ng ml(-1) in human plasma. The intra- and inter-day precision over the concentration range of tizanidine was well within 6.9% (relative standard deviation) and the accuracy was between 99.2 and 110.5%.  相似文献   

10.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay was developed and validated to quantify a novel antineoplastic agent, PM00104, in mouse, rat, dog, and human plasma. The method was validated to demonstrate the specificity, limit of quantification (LOQ), accuracy, and precision of measurements. The calibration range for PM00104 was established using PM00104 standards from 0.01-5.0 ng/mL in blank plasma. The selected reaction monitoring (SRM), based on the m/z 692.2 --> 218.2 transition, was specific for PM00104, and that based on the m/z 697.2 --> 218.2 transition was specific for PM00104 ((13)C(2),(2)H(3)) (the internal standard, IS); no endogenous materials interfered with the analysis of PM00104 and IS from blank plasma. The assay was linear over the concentration range 0.01-5.0 ng/mL. The correlation coefficients for the calibration curves ranged from 0.9981-0.9999. The mean intra-day and inter-day accuracies for all calibration standards (n = 8) ranged from 97-105% (< or =5% bias) in human plasma, and the mean inter-day precision for all calibration standards was less than 8.5%. The mean intra- and inter-day assay accuracy for all quality control (QC) replicates in human plasma (n = 9), determined at each QC level throughout the validated runs, ranged from 96-112% (< or =12% bias) and from 102-105% (< or =5% bias), respectively. The mean intra- and inter-day assay precision was less than 15.0 and 11.8% for all QC levels, respectively. For the QC samples prepared in animal species plasma, the %CV values of the assays ranged from 1.8-8.8% in mouse plasma, from 3.7-13.8% in rat plasma, and from 3.0-7.2% in dog plasma. The assay accuracies ranged from 92-102% (< or =8% bias) for all QC levels prepared in mouse plasma; ranged from 93-106% (< or =7% bias) in rat plasma; and ranged from 95-114% (< or =14% bias) in dog plasma. The assay has been used to support preclinical pharmacokinetic and toxicokinetic studies and is currently used to measure PM00104 plasma concentrations to support clinical trials.  相似文献   

11.
A selective and sensitive method for the determination of piritramide in human plasma is described. A 1-ml aliquot of plasma was extracted with 10 ml of hexane-isoamyl alcohol (99.5:0.5, v/v) (extraction efficiency 86%) after addition of 50 microliters of 2 M ammonia and 20 microliters of aqueous strychnine solution (100 ng per 10 microliters) as internal standard. Gas chromatography was performed with J&W DB-1, 30 m x 0.53 mm I.D. separation column, film thickness 1.5 microns, using an nitrogen-phosphorus-sensitive detector. The assay was linear in the concentration range 3.75-2250 ng/ml (r = 0.999), with a lower limit of detection of 1-2 ng/ml. The precision was determined using spiked plasma samples (10 and 50 ng/ml), with coefficients of variation of 3.5 and 3.1% (intra-day; n = 5) and 4.6 and 4.1% (inter-day; n = 4). In the range 3.75-150 ng/ml, the accuracy of the assay was 3.36%. The method was used for the determination of piritramide plasma concentrations in patients receiving intra- or post-operative analgesia.  相似文献   

12.
A sensitive and rapid method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with rapid solid-phase extraction (SPE) has been developed and validated for the quantitative determination of enalapril and its active metabolite enalaprilat in human plasma. After addition of internal standard to human plasma, samples were extracted by 96-well SPE cartridge. The extracts were analyzed by HPLC with the detection of the analyte in the multiple reaction monitoring (MRM) mode. This method for the simultaneous determination of enalapril and enalaprilat was accurate and reproducible, with respective limits of quantitation of 0.2 and 1.0 ng/mL in plasma. The standard calibration curves for both enalapril and enalaprilat were linear (r(2) = 0.9978 and 0.9998) over the concentration ranges 0.2-200 and 1.0-100 ng/mL in human plasma, respectively. The intra- and inter-day precision over the concentration range for enalapril and enalaprilat were lower than 13.3 and 15.4% (relative standard deviation, %RSD), and accuracy was between 89.2-105.0 and 91.9-104.7%, respectively.  相似文献   

13.
A sensitive enantioselective liquid chromatographic assay with mass spectrometric detection (LC-MS) has been validated for the determination of total and free plasma concentrations of (R)- and (S)-methadone (Met) and (R)- and (S)-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP, the primary metabolite of Met), using their respective deuterium-labeled compounds as internal standards [(R,S)-d3-Met and (R,S)-d3-EDDP]. For total drug determinations, 1 ml human plasma was extracted, using a cation-exchange solid-phase extraction cartridge; the eluate was evaporated, reconstituted in the mobile phase, and injected into the LC-MS system. The free fractions of Met and EDDP were determined, using 500 microl of plasma, which were placed in an ultrafiltration device and centrifuged at 2000 x g until 250 microl of filtrate was collected. The filtrate was extracted as described above and analyzed. Enantioselective separations were achieved using an alpha1-acid glycoprotein chiral stationary phase, a mobile phase composed of acetonitrile-ammonium acetate buffer [10 mM, pH 7.0] (18:82, v/v), a flow rate of 0.9 ml/min at 25 degrees C. Under these conditions, enantioselective separations were observed for Met (alpha = 1.30) and EDDP (alpha = 1.17) within 15 min. Met, EDDP, [2H3]-Met and [2H3]-EDDP were detected using selected ion monitoring at m/z 310.30, 278.20, 313.30, and 281.20, respectively. Linear relationships between peak height ratio and drug-enantiomer concentrations were obtained for Met in the range 1.0-300.0 ng/ml, and for EDDP from 0.1 to 25.0 ng/ml with correlation coefficients greater than 0.999, where the lower limit of quantification (LLOQ) was 1 ng/ml for Met and 0.1 ng/ml for EDDP. The relative standard deviation (R.S.D.) expressed as R.S.D. for the intra- and inter-day precision of the method were < 5.3% and the R.S.D. for accuracy was < 5.0%. The method was used to analyze plasma samples obtained from patients enrolled in a Met-maintenance program.  相似文献   

14.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of niflumic acid and its prodrug, talniflumate, in human plasma. Niflumic acid and talniflumate were eluted isocratically with methanol-water (73:27, v/v, adjusted to pH 3.5 by acetic acid) at a fl ow rate of 1 mL/min. Indomethacin was used as an internal standard. Signals were monitored by an UV detector at 288 nm. Retention times of indomethacin, niflumic acid and talniflumate were 5.9, 7.2 and 13.5 min, respectively. Calibration plots were linear over the range 50-5000 ng/mL for niflumic acid and 100-5000 ng/mL for talniflumate. The limits of quantitation were 50 ng/mL for niflumic acid and 100 ng/mL for talniflumate. The intra- and inter-day relative standard deviations (RSD) of niflumic acid and talniflumate were less than 10% and the accuracies were higher than 90%. This method is rapid, sensitive and reproducible for the determination of niflumic acid and talniflumate in human plasma.  相似文献   

15.
A sensitive and specific method for the quantitative determination of paroxetine in human plasma is presented. After solvent extraction from plasma with hexane/ethyl acetate (1 : 1) at alkaline pH and derivatization to the pentafluorobenzyl carbamate derivative, paroxetine was measured by gas chromatography-negative ion chemical ionization mass spectrometry. The carboxylate anion at m/z 372 was obtained at high relative abundance. [2H6]-labeled paroxetine was used as an internal standard and its rapid and facile preparation from the unlabeled compound is described. Calibration graphs were linear within a range of 0.094-12.000 ng x ml(-1) using 1 ml of plasma and 0.469-60 ng x ml(-1) using 200 microl of plasma. Intra-day precision was 1.47% (0.375 ng x ml(-1)), 3.16% (3 ng x ml(-1)) and 1.37% (9 ng x ml(-1)) for the low-level method, and 3.37% (1.875 ng x ml(-1)), 2.72% (15 ng x ml(-1)) and 2.22% (45 ng x ml(-1)) for the high-level method. Inter-day precision was 1.65% (0.375 ng x ml(-1)), 2.13% (3 ng x ml(-1)) and 1.66% (9 ng x ml(-1)) for the low-level method, and 1.10% (1.875 ng x ml(-1)), 1.56% (15 ng x ml(-1)) and 1.90% (45 ng x ml(-1)) for the high-level method. At the limit of quantification (0.094 ng x ml(-1)), intra-day precision was 4.30% (low-level method) and 2.56% (high-level method), and inter-day precision was 3.23% (low-level method) and 3.00% (high-level method). The method is rugged, rapid and robust and has been applied to the batch analysis of paroxetine during pharmacokinetic profiling of the drug.  相似文献   

16.
A simple and reliable reversed-phase high-performance liquid chromatography method was developed and validated for the determination of DHP-014, a niguldipine analogue with potent P-glycoprotein inhibitory and negligible calcium channel blocking properties, in rat plasma. DHP-014 and niguldipine hydrochloride (the internal standard) were extracted from rat plasma by liquid extraction using hexane. DHP-014 was then separated by HPLC on a C18 column and quantified by ultraviolet detection at 238 nm. The mobile phase consisted of acetonitrile-aqueous 5 mM phosphate buffer (65:35, v/v) containing 0.4% (v/v) triethylamine adjusted to pH 7.0. The mean extraction efficiency of DHP-014 was 109.0 +/- 12.9, 97.7 +/- 8.0 and 102.9 +/- 7.5% for DHP-014 concentrations of 10, 50 and 100 nM, respectively (n = 5). The method was linear over the concentration range 2.5-200 nM with a regression coefficient of 0.998. The limit of detection of DHP-014 in rat plasma was 1.0 nM. The intra- and inter-day coefficients of variation for DHP-014 in rat plasma were 4.7-7.9 and 6.9-9.9%, respectively. The intra- and inter-day accuracy was 98.2-99.5 and 97.9-103%, respectively. The bioanalytical technique was used to determine DHP-014 in plasma samples in a pharmacokinetic study of DHP-014 administered to female Sprague-Dawley rats.  相似文献   

17.
Capillary zone electrophoresis was developed for the simultaneous determination of haloperidol (HP) and its chiral metabolites [(+)- and (-)- reduced haloperidol, (+)- and (-)-RHP] in human plasma. The method involved the presence of an internal standard and liquid-liquid extraction from plasma. After concentration, the residue from the organic extract was dissolved in aqueous acid for capillary electrophoretic analysis. The background electrolyte was Tris-phosphate buffer with dimethyl-beta-cyclodextrin and PEG 6000. In spiked plasma the quantitative ranges were 40-400 nM for HP and 50-500 nM for (+)-RHP or (-)-RHP. The intra-day and inter-day relative standard deviations (n = 3) were all < 20% for each substance. The detection limits were found to be 15 ng/ml for HP and 30 ng/ml for both enantiomers of RHP (S/N = 3, injection 20 s). All recoveries were > 70%. We investigated the in vivo metabolism of HP in Chinese schizophrenia patients. The results show that (-)-RHP seems to be the only chiral metabolite from these two HP-dosed patients.  相似文献   

18.
A rapid, sensitive and selective liquid chromatography-tandem spectrometry method was developed and validated for determination of paeoniflorin in rat plasma using geniposide as the internal standard. The samples were pretreated with solid-phase extraction using Extract-Clean cartridges. Separation of paeoniflorin and IS was achieved on a reversed-phase C18 column (50x4.6 mm i.d.) with a mobile phase made up of acetonitrile and 0.05% formic acid (25:75, v/v) at a flow rate of 0.5 mL/min. Detection was carried out on a triple quadrupole tandem mass spectrometer by multiple-reaction monitoring and an electrospray ionization source was employed as the ionization source. The lower limit of quantification obtained was 4 ng/mL (n=6) using 200 microL plasma with an accuracy of -3.67% (relative error) and a precision of 4.13% (relative standard deviation). A good linearity was found in the range of 4-1000 ng/mL. The intra- and inter-day relative standard deviations in the measurement of quality control samples 10, 150 and 800 ng/mL ranged from 3.73 to 4.94% and from 4.31 to 6.56%, respectively. The accuracy was from -3.93 to -1.11% in terms of relative error. The analyte and IS were stable in the battery of stability studies. This method was successfully applied to a pharmacokinetic study of paeoniflorin after a single oral administration of 53.36 mg/kg paeoniflorin to rats.  相似文献   

19.
A sensitive and selective high-performance liquid chromatographic (HPLC) assay was developed for the determination of tibenelast, 5,6-diethoxybenzo[b]thiophene-2- carboxylic acid, in plasma and urine. The plasma assay involves protein precipitation with 4% trichloroacetic acid, while the urine assay is an automated solid-phase extraction procedure that utilizes the Waters Millilab workstation. The analysis was achieved by reversed-phase HPLC with ultraviolet detection at 313 nm. The quantitation limit of the assay was 50 ng/ml in plasma and 100 ng/ml in urine. The intra-day coefficient of variation for the plasma analysis was between 2.2 and 8.4%, while the overall inter-day coefficient of variation was 5.5 and 6.0% for the high and low calibration curves, respectively. The intra-day coefficient of variation for the urine analysis was between 0.3 and 3.0%, while the inter-day coefficient of variation was 2.1% for both the low and high validation samples. The assay methodology has been used in the evaluation of samples from pharmacokinetic and clinical safety studies.  相似文献   

20.
A sensitive and specific procedure for simultaneous quantitation of chlorpheniramine and pseudoephedrine in human plasma has been developed and validated. Analytes were extracted from plasma samples by liquid-liquid extraction, separated on a Diamonsil C18 column (250 x 4.6 mm i.d.) and detected by tandem mass spectrometry with an atmospheric pressure chemical ionization interface. Diphenhydramine was used as the internal standard. The method has a lower limit of quantitation of 0.2 and 2.0 ng/mL for chlorpheniramine and pseudoephedrine, respectively. The intra- and inter-day relative standard deviation, calculated from quality control (QC) samples were below 4.3% for chlorpheniramine and below 9.5% for pseudoephedrine. The inter-day relative error as determined from QC samples was within 4.7% for each analyte. The overall extraction recoveries of chlorpheniramine and pseudoephedrine were 77 and 61% on average, respectively. The method was successfully applied to pharmaockinetic study of chlorpheniramine and pseudoephedrine in volunteers receiving formulations containing 4 mg of chlorpheniramine maleate and 60 mg of pseudoephedrine hydrochloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号