首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level structure of 158Gd has been studied using the prompt γ-rays and conversion electrons emitted following neutron capture in 157Gd. The γ-ray energy and intensity measurements were made using both Ge(Li) detectors and a curved-crystal spectrometer. Conversion-electron energy and intensity measurements were made using two separate magnetic spectrometers: one to measure the primary electron spectrum and the other to measure the lower energy secondary electron spectrum. Some γ-γ coincidence measurements were also made among the secondary γ-rays. From these data, a neutron separation energy of 7937.1 ± 0.5 keV has been determined for 158Gd. A level scheme containing 59 excited states with energies < 2.25 MeV, for which de-excitation modes have been identified, is proposed for 158Gd. Many of these states have been grouped into rotational bands. A total of thirteen excited rotational bands with band-head energies below 2.0 MeV are contained in the level scheme. Features of the proposed level scheme include: the Kπ = 0?, 1? and 2? octupole-vibrational bands with band-head energies of 1263, 977 and 1793 keV, respectively; the γ-vibrational band at 1187 keV; three excited Kπ = 0+ bands with band-head energies of 1196, 1452 and 1743 keV; several two-quasiparticle bands with band-head energies in keV (and Kπ assignments) of 1380 (4+), 1636 (4?), 1847 (1+), 1856 (1?), 1920 (4+) and 1930 (1+). An analysis of (d, p) reaction data is presented which permits definite two-quasiparticle configuration assignments to be made to most of these latter bands. Evidence is presented which suggests strong mixing of some two-neutron and two-proton bands. A phenomenological four-band mixing analysis is made of the energy and E2 transition-probability data for the ground-state band and the three lowest-lying excited collective positive-parity bands. Good agreement with experiment is obtained. A Coriolis-mixing analysis of the octupole bands has been carried out and good agreement with the data on level energies and E1 transition probabilities to the ground-state band has been achieved. Values of Z, the ratio of the E1 transition matrix element with ΔK = 1 to that with ΔK = 0, involving the octupole bands and the first four 0+ bands are derived. For three of these 0+ bands, absolute values of these matrix elements are deduced. An interesting alternation in the sign of Z is observed for these four 0+ bands.  相似文献   

2.
The level structure of 184W has been studied from the prompt γ-rays emitted following the capture of both thermal and 2 keV neutrons by 183W. Energies and intensities were measured for both the primary and the secondary (low-energy) prompt γ-rays. From these data, a level scheme is proposed for 184W in which all the Iπ = 0+, 1+ and 2+ states below ≈ 2.0 MeV are observed. Where possible, rotational-band assignments have been made to these and other levels. Additional evidence is presented which confirms the 1130 keV state as being the band head of a Kπ = 2? octupole vibrational band. Admixed Kπ = 0+ and 2+ bands are established at 1322 and 1386 keV, respectively, with the Iπ = 2+ states (at 1431 and 1386 keV) having a mutual admixture of ≈ 12%. In the energy region above 1.5 MeV, the following bands and band-head energies are identified: Kπ = 1+, 1613 keV; Kπ = 0+, 1614 keV; Kπ = 1+, 1713 keV; Kπ = 2+, 1877 keV. The neutron binding energy in 184W has been determined to be 7411.1±0.6 keV. The band structure of the 1613 keV (1+) and 1614 keV (0+) bands is observed to be strongly distorted, the observed A ( h?2/2I) values being ≈ 3.6 keV and ≈ 32 keV, respectively. This strong distortion is shown to be explainable in terms of Coriolis coupling of reasonable strength between the two bands. A similar explanation is shown to account for the somewhat less anomalous A-values (22.8 keV and 14.0 keV, respectively) of the 2+ band at 1386 keV and the 3+ band at 1425 keV. The results of a phenomenological fiveband-mixing analysis involving the Kπ = 0+ and 2+ bands below ≈ 1.5 MeV are presented and discussed. These calculations indicate, among other things, that the direct E2 matrix element connecting the 1322 keV, Kπ = 0+ band and the ground-state band is quite small, possibly zero. They also indicate that a nonzero E2 matrix element exists between this excited Kπ = 0+ band and the γ-vibrational band and that the magnitude of this element is comparable with that between the γ-vibrational and ground-state bands. Arguments favoring and apparently refuting the interpretation of the 1322 keV, 0+ band as a “two-phonon γ-vibration” are presented.  相似文献   

3.
The electron-capture decay of228Pa to levels in228Th has been studied using mass-separated sources and high-resolutionγ-ray and conversion-electron spectroscopy. A level at 979.5 keV is assigned as 2+ member of a second excited Kπ=0+ band, with the 0+ band head at 938.6 keV. The 2+ and 3+ members of a second excited Kπ=2+ band at 1153.5 and 1200.5 keV, which decay by strongE0 transitions to the 969 keVγ-vibrational band, are confirmed. In addition we tentatively propose a Kπ=1+ band at 944 keV. The Kπ=0?, 1? and 2? members of the octupole quadruplet are confirmed, and theγ decay of these levels is analysed in an approach, in which the mixing of the octupole bands by the Coriolis interaction is taken into account. It is suggested that octupole correlations might be important for theE1 transition moments. A total of 29 levels is observed between ~1.4 and ~2.0 MeV, for which the nuclear structure, and the possible assignment to rotational bands, is unclear.  相似文献   

4.
The decay of 184mRe has been investigated through γ-ray and conversion electron studies. The band head of the Kπ = 2? octupole band has been established at 1130.0 keV. The E2/M1 mixing ratios of three transitions from the γ-vibrational band to the ground state band have been determined by angular correlation measurements. A mixing of El, M2 and E3 multipolarity has been derived for the 921 keV transition combining angular correlation and conversion electron data. A value B(E3, 0+ → 3? = (25 ± 5) × 104e2 · fm6 was obtained from the measured E2/M1 mixing of the 91 keV 3? → → 2? transition and γ-branchings. The data are discussed in terms of the collective model taking into account band mixing.  相似文献   

5.
The 230Th(α, α'2n)228Th reaction at Eα = 56 MeV was used to investigate states of moderately high spin in 228Th. Conversion electron and e?-γ coincidence measurements were carried out, where the electrons were detected with an iron-free orange spectrometer. The ground state and low-lying Kπ = 0? rotational bands were observed up to Iπ = 14+ and 13?, respectively. The data are interpreted in terms of an ω-expansion for the ground-state rotational band, and an octupole vibrational band distorted by the Coriolis coupling to the Kπ ? 1? excitations for the Kπ = 0? band.  相似文献   

6.
A complete set of conventional γ-ray spectroscopic techniques has been applied to investigate the level structure of 156Gd. A total of twenty-five new levels has been established; unambiguous spin assignments could be given for twelve of them on the basis of angular distributions and conversion electron measurements. The proposed level scheme contains 49 levels, which can be ordered in seven rotational bands. The ground-state band was excited up to Jπ = 14+, the β-band up to 10+, the γ-band up to (11+), the second Kπ = 0+ band tentatively up to (10+), the Kπ = 4+ band up to (8+). Two negative-parity bands, one with even spins and one with odd spins, were excited to Jπ = (12?) and (13?). An isomeric state was established with T12 = 1.3 μs, Jπ = 7?, Ex = 2137.7 keV. The properties of the Kπ = 4+ band and the isomeric state can be well explained by two-quasiparticle configurations. The negative-parity bands are interpreted as aligned octupole bands. Positive and negative-parity bands have been calculated in terms of the IBA model. Good agreement with the experimental results is obtained.  相似文献   

7.
Rotational sidebands in 166Er were observed using the 24 MeV 164Dy(α, 2nγ) reactions. The ground-state band was observed up to spin 16+ and does not backbend. A strong backbend is, however, observed in a Kπ = (O+) sideband, indicating that the 12+ state of the previously unknown S-band is at 2656 keV. The γ-band shows significant rotational alignment above I = 10+. Levels of at least two negative-parity bands, one of which is primarily the Kπ = 2? octupole vibration, are also observed.  相似文献   

8.
Levels up to 2.3 MeV in 156Gd have been studied using the (n, γ) reaction. Energies and intensities of low-energy γ-rays and electrons emitted after thermal neutron capture have been measured with a curved-crystal spectrometer, Ge(Li) detectors and a magnetic electron spectrometer. High-energy (primary) γ-rays and electrons have been measured with Ge(Li) detectors and a magnetic spectrometer. The high-energy γ-ray spectrum has also been measured in thermal neutron capture in 2 keV resonance neutron capture. The neutron separation energy in 156Gd was measured as Sn = 8535.8 ± 0.5 keV.About 600 transitions were observed of which ~50% could be placed in a level scheme containing more than 50 levels up to 2.3 MeV excitation energy. 42 of these levels were grouped into 15 excited bands. In addition to the β-band at 1050 keV we observe 0+ bands at 1168, 1715 and 1851 keV. Other positive-parity bands are: 1+ bands at 1966, 2027 and 2187 keV; 2+ bands at 1154 (γ-band) and 1828 keV; and 4+ bands at 1511 and 1861 keV. Negative-parity bands are observed at 1243 keV (1?), 1366 keV (0?), 1780 keV (2?) and 2045 keV (4?). Reduced E2 and E0 transition probabilities have been derived for many transitions. The ground band, the β- and γ-bands and the 0+ band at 1168 keV have been included in a phenomenological four-band mixing calculation, which reproduces well the experimental energies and E2 transition probabilities.The lowest three negative-parity (octupole) bands of which the 0? and the 1? bands are very strongly mixed, were included in a Coriolis-coupling analysis, which reproduces well the observed energies. The E1 transition probabilities to the ground band are also well reproduced, while those from the higher-lying 0+ bands to the octupole bands are not reproduced. Absolute and relative transition probabilities have been compared with predictions of the IBA model and the pairingplus-quadrupole model. Both models reproduce well the E2 transitions from the γ-band, while strong disagreements are found for the E2 transitions from the β-band. The IBA model predicts part of the decay features of the higher lying 2+2, 4+1 and 2?1 bands.  相似文献   

9.
《Nuclear Physics A》1987,464(1):1-8
The γ-rays following the β decay of 230Fr have been investigated by means of γ-ray singles including multispectrum analysis and γγ coincidence measurements using Ge(Li) detectors. The half-life of 230Fr was measured to be 19.1 ± 0.5 s. Most of the observed transitions could be placed in a level scheme comprising 23 new excited states of 230Ra, ten of them grouped into the Kπ = 0+ ground-state band, the Kπ = 0 band with its 1 state at 710.9 keV and a Kπ = 2+ γ-vibrational band with its head at 734.8 keV. It is concluded that 230Ra is a better rotator than the lighter radium isotopes, and has no ground-state octupole deformation.  相似文献   

10.
Vibrational bands in 226Ra were studied by Coulomb excitation and by the 226Ra(d,pnγ) reaction. The first-excited K π = 0+ and 1? bands with known band heads at 825 and 1049 keV, respectively, were extended up to the 8+ and 7? levels. A new 2+ level at 1110 keV and the known 2+ level at 1156 keV were observed following Coulomb excitation and interpreted as γ vibration and possible member of a second-exited K π = 0+ band, respectively. The E1 and E2 branching ratios from these vibrational bands to the ground and first-excited 0? band are explained within the rotational model including band mixings. No evidence was found for a 0+ level at 650 keV proposed earlier.  相似文献   

11.
Vibrational bands in226Ra were studied by Coulomb excitation and by the226Ra(d,pnγ) reaction. The first-excitedK π = 0+ and 1? bands with known band heads at 825 and 1049 keV, respectively, were extended up to the 8+ and 7? levels. A new 2+ level at 1110 keV and the known 2+ level at 1156 keV were observed following Coulomb excitation and interpreted asγ vibration and possible member of a second-exitedK π = 0+ band, respectively. TheE1 andE2 branching ratios from these vibrational bands to the ground and first-excited 0? band are explained within the rotational model including band mixings. No evidence was found for a 0+ level at 650 keV proposed earlier.  相似文献   

12.
Levels of 184Os populated in the decay of 3.1 h 184Ir and in the 185Re(p, 2nγ) reaction have been investigated. The measurements included γ-ray singles, β+ ray endpoint, conversion coefficient, β+-γ coincidence and detailed γ-γ coincidence determinations. The results have established an extensive 184Os level scheme, which includes well developed ground state, γ-vibrational and K = 3 octupole bands and which accommodates all the intense transitions observed in both the radioactivity and in-beam γ-ray measurements. Deviations of the level energies in the Kπ = 0+and Kπ = 2+ bands and of the interband reduced transition probabilities from the predictions of the strong-coupling model are discussed in terms of the rotationvibration interaction, and the systematics of the octupole vibrational excitations in even-mass W and Os nuclei are reviewed. It is concluded that the 184Ir ground state configuration has a spin of 5, and that it contains large admixtures of K = 0 or K = 1 character.  相似文献   

13.
Yrast states in 218Ra up to spin and parity Iπ = 17? were identifíed by means of the 208Pb(13C, 3n) reaction and standard γ-ray spectroscopic techniques. The level scheme is characterized by two bands of opposite parity with nearly constant level spacing. A cascade of strong E1 interband transitions connects both bands.The results are discussed within the systematics of the even Ra isotopes. The negative-parity band which is observed from the Iπ = 5? to the Iπ = 17? state, is interpreted as an octupole vibrational band. The level scheme can be well reproduced in the vibrational limit of the interacting boson approximation (IBA1) which fails, however, to explain the strong E1 feeding of the negative-parity band from the ground-state band  相似文献   

14.
Rotational side-bands in 162Dy have been studied using the 160Gd(α, 2nγ)162Dy reaction. Seven side-bands are observed, with Kπ = 2+, 2?, (0)?, 0+, 5?, 4+ and (6?). Four of these bands have collective structure at low spin: the Kπ = 2+γ-vibrational band, the Kπ = 0+β-vibrational band, and the Kπ = 2? and (0)? octupole vibrational bands. Of the remaining bands, the 4+ band is deformation coupled while the 5? and (6?) bands are rotation-aligned. Several bandcrossings are observed in this nucleus. The β and γ-bands are crossed at I = 6h?and 12h?, respectively, by a highly aligned (i132)2 S-band; extrapolation of this S-band to higher spin suggests that it crosses the g.s.b. between I = 18h?and 20h?. The 2? octupole band is crossed by the 5? band at I = 9h? and again by the (6?) band at I = 12h?. The latter bandcrossings are discussed in terms of two-quasiparticle plus rotor calculations.  相似文献   

15.
The level structure of 228Th was studied using mass-separated 228Pa sources and a γ - γ coincidence setup of 5 Compton suppressed Ge detectors. The complete octupole quadruplet, three excited K π = 0+ bands and two excited K π = 2+ bands were identified at excitation energies elow 1.4 MeV.  相似文献   

16.
High-spin yrast and non-yrast states have been identified in 176Os, 178Os and 180Os using (16O, xn) reactions, and γ-ray techniques. Band crossing anomalies are observed in each of the positive-parity yrast bands. The magnitude of these anomalies decreases with decreasing neutron number, an effect attributed to the change in the moment of inertia of the ground state rotational bands. A 23 ns isomer, predominantly Kπ = 7?, is identified at 1930 keV in 180Os. The configuration of this isomer is discussed on the basis of the properties of its rotational band. Negative parity, odd and even spin, sideband sequences are observed in each isotope. Their relationship to rotation-aligned octupole and 2-quasiparticle bands is discussed from their excitation energies, band spacings, and decay properties. Detailed calculations for Coriolis mixed bands are carried out for the likely 2-quasiproton and 2-quasineutron configurations. An anomaly observed at spin 17 in the odd-spin negative-parity sequence in 180Os is attributed to a band crossing with a fourquasiparticle configuration.  相似文献   

17.
Coulomb excitation studies have been performed to measure transition probabilities of collective quadrupole vibrational states in 180Hf. The I = 2 level of the Kπ = 2+ collective γ-band is established at 1200.5 keV with B(E2)exc = (11.0 ± 1.1) × 10?50e2 · cm4 (3.6 ± 0.4 s.p.u.). The angular distribution of the de-exciting γ-rays from this level yields δ = 9.6+22?5.8 or, less likely, 0.7 ± 0.2 for the 1107.2 keV 2γ+ → 2g+ transition. The B(E2)exc for any KπI = 0+2 stateorother 2+ states up to 1500 keV is less than 5 × 10?51e2 · cm4 (< 0.2. s.p.u.).  相似文献   

18.
Levels of 184W populated in the decay of 8.7 h 184Ta have been studied by a variety of experimental techniques. As a result of β and γ-ray energy and intensity determinations and extensive β-γ and γ-γ coincidence measurements, a detailed 184Ta decay scheme accommodating more than 99.5% of the decay intensity has been established. Intense β-ray groups of end-point energies 1165±26 and 1123±26 keV populate levels in 184W at 1699 and 1746 keV, which de-excite predominantly to the 8.3 μs isomeric level at 1285 keV, recently identified as the 12?[510]ν?112+ [615]ν Kπ = 5? band origin. The 1699 keV level also de-excites to members of a 12?[510]ν?72 [503]ν Kπ = 3+ band based at 1425 keV. New information about the properties of the γ-vibrational and K = 2 octupole bands in 184W is presented and the possible configurations of the levels directly populated in the β? decay are discussed. The configuration 72+[404]π ?32? [512]ν Kπ = 5? is indicated for the 184Ta ground state.  相似文献   

19.
From γ-ray linear polarization measurements, γ-ray angular distributions and γ?γ coincidences, the following levels were identified in 48V (EXin keV): 4? at 1099, (5?) at 1685, (6?) at 2397, (7?) at 3171 and (8?) at 3976. This sequence of states is interpreted as a Kπ = 4? rotational band.  相似文献   

20.
The decay of 4 min 158Tm has been investigated with on-line mass-separated samples obtained from the Orsay ISOCELE separator. Measurements of γ-rays, conversion electron lines and γ-γ bi-dimensional coincidences were performed. About 180 transitions were ascribed to the decay and two thirds of them were placed in a decay scheme. The β-band and the γ-band were identified with bandheads situated at 806.40 and 820.13 keV respectively. In addition, a number of other vibrational bands (β-γ, β-β, Kπ = 0? and 1?) are proposed. The decay properties of those bands are discussed in the framework of current nuclear models. The log ft values suggest a 2? assignment for 158Tm with the possible configuration (p404J↓-n521↑).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号