首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many neurodegenerative diseases are associated with the aggregation of misfolded proteins into amyloid oligomers or fibrils that are deposited as pathological lesions within areas of the brain. An attractive therapeutic strategy for preventing or ameliorating amyloid formation is to identify agents that inhibit the onset or propagation of protein aggregation. Here we demonstrate how solid-state nuclear magnetic resonance (ssNMR) may be used to identify key residues within amyloidogenic protein sequences that may be targeted to inhibit the aggregation of the host protein. For alpha-synuclein, the major protein component of Lewy bodies associated with Parkinson's disease, we have used a combination of ssNMR and biochemical data to identify the key region for self-aggregation of the protein as residues 77-82 (VAQKTV). We used our new structural information to design a peptide derived from residues 77 to 82 of alpha-synuclein with an N-methyl group at the C-terminal residue, which was able to disrupt the aggregation of alpha-synuclein. Thus, we have shown how structural data obtained from ssNMR can guide the design of modified peptides for use as amyloid inhibitors, as a primary step toward developing therapeutic compounds for prevention and/or treatment of amyloid diseases.  相似文献   

2.
3.
Protein aggregation is implicated in the etiology of numerous neurodegenerative diseases. An understanding of aggregation mechanisms is enhanced by atomic-resolution structural information, of which relatively little is currently available. Lewy bodies, the pathological hallmark of Parkinson's disease, contain large quantities of fibrillar alpha-synuclein (AS). Here we present solid-state NMR spectroscopy studies of dried AS fibrils. The spectra have high resolution and sensitivity, and the site-resolved chemical shifts agree very well with those previously observed for hydrated fibrils. The conserved chemical shifts indicate that bulk water is nonessential to the fibril core structure. Moreover, the sample preparation procedure yields major improvements in spectral sensitivity, without compromising spectral resolution. This advance will greatly assist the atomic-resolution structural analysis of AS fibrils.  相似文献   

4.
Protein aggregation is commonly associated with a large number of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and other types of pathological conditions. Misfolding and aggregation of a number of peptides and proteins have been found to occur under these conditions. In the present review, some mechanistic features of the events related to the type of structure–function relationships which may define the outcome of the abnormal conditions are discussed. The immunological responses to the aggregates and possible therapeutic strategies for prevention or control of the diseases are also reviewed. Protein aggregation and its effect on human body have become an important issue over the last two decades. Many diseases in human are related to aggregation and misfolding of different kinds of proteins; therefore, diagnosis of causes of the aggregation and their mechanisms which provoke it are important. This review describes the relations between structures and functions of already aggregated proteins, as well as proteins, which only enter initial stages of aggregation. The consequences of aggregations, which provoke many kinds of neurodegenerative disorders, are explained in details and some factors that may influence their severity are described. In addition, the immunologic responses to these aggregates are discussed. Suggestions of plausible therapies of preventing or slowing down the protein condensation diseases are presented.  相似文献   

5.
It has been known that the over-expression of alpha-synuclein, the main protein of Lewy bodies in Parkinson's disease (PD), leads to neurodegeneration in PD models. In this study, the changes in protein expression between the transgenic over-expressing human alpha-synuclein wild type (alpha-synWT) and the control Caenorhabditis elegans were elucidated by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) proteome analysis, which is a highly selective, sensitive, repeatable and quantitative method for protein identification. Because the alpha-synuclein wild-type worms showed moderate levels of dopamine loss without overt behavioral abnormalities, it was suggested that the changes in proteins in the alpha-synWT are related in the sequence of the formation of Lewy bodies. Among more than 400 protein peaks detected, actin and several ribosomal proteins were identified for the first time as negative markers at early PD stages. Actin was suggested to be one of the important targets in the elucidation of the etiology of neuronal diseases such as PD or other synucleinopathies.  相似文献   

6.
The misfolding of proteins into a toxic conformation is proposed to be at the molecular foundation of a number of neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Evidence that α-synuclein amyloidogenesis plays a causative role in the development of Parkinson's disease is furnished by a variety of genetic, neuropathological and biochemical studies. There is a major interest in understanding the structural and toxicity features of the various species populated along the aggregation pathway of this protein. The development of multidimensional nuclear magnetic resonance (NMR) spectroscopy in liquid and solid state over the last decade has significantly increased the scope of molecules that are amenable for structural studies. The aim of this review is to provide a picture of how NMR tools were used in concert to decipher the structural and dynamic properties of the intrinsically disordered protein α-synuclein in its native, oligomeric, fibril and membrane-bound states. Understanding the structural and molecular basis behind the aggregation pathway of α-synuclein is key to advance in the design of a therapeutic strategy.  相似文献   

7.
8.
The aggregation of alpha-synuclein in the dopaminergic neurons of the substantia nigra is a critical step in the Parkinson's disease (PD). The etiology of the disease is unknown but recent epidemiological and experimental studies have renewed interest in the hypothesis that environmental factors, especially herbicides and metals, have a role on the pathogenesis of PD. For the first time, the association constants of alpha-synuclein with five herbicides have been calculated using a capillary electrophoresis (CE) method. In addition, the effect of a number of metals on this binding has been investigated. It appears that the herbicides preferentially bind to a partially folded intermediate conformation of alpha-synuclein induced by manganese, aluminium, cadmium, copper and zinc. Then, metal increases the synuclein-herbicide association. However, this study shows contrasting actions with the antibiotic rifampicin and magnesium addition leading to a decrease of the alpha-synuclein-herbicide interaction even if other metals are present in the bulk solvent. Considering epidemiological studies, all these results suggest an underlying molecular basis for PD and related body diseases.  相似文献   

9.
10.
The aggregation of alpha-synuclein in dopaminergic neurons of the substantia nigra is a critical step in the pathogenesis of Parkinson's disease. We show that the antibiotic rifampicin inhibited alpha-synuclein fibrillation and disaggregated existing fibrils in a concentration-dependent manner. Size-exclusion chromatography data indicated that rifampicin stabilized alpha-synuclein as both a monomer and soluble oligomers comprised of partially folded alpha-synuclein. Experiments using aged samples of rifampicin indicated that the most active species in inhibiting fibrillation and disaggregating fibrils is an oxidation product of rifampicin, which was confirmed in experiments under anaerobic conditions. These results indicate that rifampicin-mediated inhibition of alpha-synuclein fibrillation and disaggregation of fibrils involves preferential stabilization of monomeric and soluble oligomeric forms, and that rifampicin potentially may have therapeutic application for Parkinson's disease.  相似文献   

11.
The aggregation of alpha-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. Interactions with metal ions affect dramatically the kinetics of fibrillation of AS in vitro and are proposed to play a potential role in vivo. We recently showed that Cu(II) binds at the N-terminus of AS with high affinity (K(d) approximately 0.1 microM) and accelerates its fibrillation. In this work we investigated the binding features of the divalent metal ions Fe(II), Mn(II), Co(II), and Ni(II), and their effects on AS aggregation. By exploiting the different paramagnetic properties of these metal ions, NMR spectroscopy provides detailed information about the protein-metal interactions at the atomic level. The divalent metal ions bind preferentially and with low affinity (millimolar) to the C-terminus of AS, the primary binding site being the (119)DPDNEA(124) motif, in which Asp121 acts as the main anchoring residue. Combined with backbone residual dipolar coupling measurements, these results suggest that metal binding is not driven exclusively by electrostatic interactions but is mostly determined by the residual structure of the C-terminus of AS. A comparative analysis with Cu(II) revealed a hierarchal effect of AS-metal(II) interactions on AS aggregation kinetics, dictated by structural factors corresponding to different protein domains. These findings reveal a strong link between the specificity of AS-metal(II) interactions and the enhancement of aggregation of AS in vitro. The elucidation of the structural basis of AS metal binding specificity is then required to elucidate the mechanism and clarify the role of metal-protein interactions in the etiology of Parkinson's disease.  相似文献   

12.
The generation of highly organized amyloid fibrils is associated with a wide range of conformational pathologies, including primarily neurodegenerative diseases. Such disorders are characterized by misfolded proteins that lose their normal physiological roles and acquire toxicity. Recent findings suggest that proteostasis network impairment may be one of the causes leading to the accumulation and spread of amyloids. These observations are certainly contributing to a new focus in anti‐amyloid drug design, whose efforts are so far being centered on single‐target approaches aimed at inhibiting amyloid aggregation. Chaperones, known to maintain proteostasis, hence represent interesting targets for the development of novel therapeutics owing to their potential protective role against protein misfolding diseases. In this minireview, research on nanoparticles that can either emulate or help molecular chaperones in recognizing and/or correcting protein misfolding is discussed. The nascent concept of “nanochaperone” may indeed set future directions towards the development of cost‐effective, disease‐modifying drugs to treat several currently fatal disorders.  相似文献   

13.
α-Synuclein (αS) aggregation is a hallmark in several neurodegenerative diseases. Among them, Parkinson''s disease is highlighted, characterized by the intraneuronal deposition of Lewy bodies (LBs) which causes the loss of dopaminergic neurons. αS is the main component of LBs and in them, it usually contains post-translational modifications. One of them is the formation of advanced glycation end-products (mainly CEL and MOLD) arising from its reaction with methylglyoxal. Despite its biological relevance, there are no data available proving the effect of glycation on the conformation of αS, nor on its aggregation mechanism. This has been hampered by the formation of a heterogeneous set of compounds that precluded conformational studies. To overcome this issue, we have here produced αS homogeneously glycated with CEL. Its use, together with different biophysical techniques and molecular dynamics simulations, allowed us to study for the first time the effect of glycation on the conformation of a protein. CEL extended the conformation of the N-terminal domain as a result of the loss of transient N-/C-terminal long-range contacts while increasing the heterogeneity of the conformational population. CEL also inhibited the αS aggregation, but it was not able to disassemble preexisting amyloid fibrils, thus proving that CEL found on LBs must be formed in a later event after aggregation.

We study the effect of an advanced glycation end product (N(ε)-(carboxyethyl)lysine), found on the Lewy bodies of people suffering from Parkinson’s disease, on the conformational and aggregation features of alpha-synuclein.  相似文献   

14.
Misfolding, aggregation and fibrillation of amyloidogenic proteins have been established as hallmark events in pathophysiology of various degenerative diseases. Inhibition of protein fibrillation through use of plant derived molecular scaffolds is currently considered as one solution to it. Further, rational design of therapeutic originating with the specific plant molecular scaffolds appeared passable to aid in mitigating amyloidogenic diseases. Silibinin (SB) is a flavonolignan obtained from milk thistle plant. SB is well acclaimed as a potent hepatoprotective, cardioprotective and an attenuator of receptor signaling in case of type 2 diabetes. This work reports the inhibitory capacity of SB against protein fibrillation under experimental conditions. Human serum albumin (HSA), an ubiquitous serum protein was used and various platform studies were carried out for indepth understanding of similar effects. Biophysical studies and electron microscopy confirmed that SB inhibited HSA fibrils formations by 36% at optimal molar ratio. In silico studies further demonstrated that intermolecular hydrogen bonds and hydrophobic interactions hindered progressive aggregation and protein fibrillation.  相似文献   

15.
Neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD) have no cure and pose a serious threat to human health. The accumulated amyloid has been the therapeutic target of various studies for over a decade, but there is a lack of effective treatments due to various limitations, such as the difficulty to cross the blood-brain barrier (BBB) and unfavorable bioaccumulation. To overcome these challenges, ultra-small metal nanoclusters (MNCs) (<2 nm) have emerged as promising new agents. Simple modifications of MNCs efficiently cross the BBB to reach the brain and dissociate amyloid fibrils into less toxic species. In addition, the enzymatic behavior of MNCs facilitates the scavenging of intracellular reactive oxygen species (ROS) and alleviates neuroinflammation. Herein, we summarize the reported anti-amyloid MNCs. Multiple promising functions of MNCs that may alleviate the harms of neurodegenerative diseases are exhibited. The physicochemical properties that influence the inhibition and degradation of common amyloid fibrils, including alpha-synuclein (α-syn) and amyloid beta-peptide (Aβ) are discussed. The prospect of optimizing MNCs to suppress more harm in the brain is presented to facilitate the development of practical therapies for neurodegenerative diseases.  相似文献   

16.
A molecular understanding of the prion diseases requires delineation of the origin of misfolding of the prion protein (PrP). An understanding of how different disease‐linked mutations affect the structure and dynamics of native monomeric PrP can provide a clue about how misfolding commences. In this study, hydrogen–deuterium exchange mass spectrometry was used to show that several disease‐linked mutant variants, which are thermodynamically destabilized, share a common structural perturbation in their native states: helix 1 is destabilized to an extent that correlates well with the destabilization of the native protein. The mutant variants misfold and form oligomers faster than does the wild‐type protein, at rates that increase exponentially with the extent to which helix 1 is destabilized in the native protein. It appears, therefore, that the loss of helix 1 structure marks the beginning of PrP misfolding and oligomerization.  相似文献   

17.
Extracellular deposition of amyloid‐beta (Aβ) protein, a fragment of membrane glycoprotein called β‐amyloid precursor transmembrane protein (βAPP), is the major characteristic for the Alzheimer's disease (AD). However, the structural and mechanistic information of forming Aβ protein aggregates in a lag phase in cell exterior has been still limited. Here, we have performed multiple all‐atom molecular dynamics simulations for physiological 42‐residue amyloid‐beta protein (Aβ42) in explicit water to characterize most plausible aggregation‐prone structure (APS) for the monomer and the very early conformational transitions for Aβ42 protein misfolding process in a lag phase. Monitoring the early sequential conformational transitions of Aβ42 misfolding in water, the APS for Aβ42 monomer is characterized by the observed correlation between the nonlocal backbone H‐bond formation and the hydrophobic side‐chain exposure. Characteristics on the nature of the APS of Aβ42 allow us to provide new insight into the higher aggregation propensity of Aβ42 over Aβ40, which is in agreement with the experiments. On the basis of the structural features of APS, we propose a plausible aggregation mechanism from APS of Aβ42 to form fibril. The structural and mechanistic observations based on these simulations agree with the recent NMR experiments and provide the driving force and structural origin for the Aβ42 aggregation process to cause AD. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
A wealth of epidemiological evidence indicates a strong link between type 2 diabetes (T2D) and Alzheimer's disease (AD). The fiber deposition with cross‐β‐sheet structure formed by self‐aggregation and misfolding of amyloidogenic peptides is a common hallmark of both diseases. For the patients with T2D, the fibrils are mainly found in the islets of Langerhans that results from the accumulation of human islet amyloid polypeptide (hIAPP). The major component of aggregates located in the brain of AD patients is amyloid‐β (Aβ). Many biophysical and physiological properties are shared by hIAPP and Aβ, and both peptides show similar cytotoxic mechanisms. Therefore, it is meaningful to investigate the possible cross‐interactions of hIAPP and Aβ in both diseases. In this article, the segment 25–35 of Aβ was selected because Aβ25–35 was a core region in the process of amyloid formation and showed similar aggregation tendency and toxicity with full‐length Aβ. The electrospray ionization‐ion mobility‐mass spectrometry analysis and thioflavin T fluorescence kinetic analysis combined with transmission electron microscopy were used to explore the effects of the coexistence of Aβ25–35 and hIAPP on the self‐aggregation of both peptides and whether there was co‐assembly in fibrillation. The results indicated that the aggregation of hIAPP and Aβ25–35 had two nucleation stages in the binary mixtures. hIAPP and Aβ25–35 had a high binding affinity and a series of hetero‐oligomers formed in the mixtures of hIAPP and Aβ25–35 in the early stage. The cross‐reaction between hIAPP monomers and Aβ25–35 monomers as well as a little of oligomers during primary nucleation stage could accelerate the aggregation of Aβ25–35. However, owing to the obvious difference in aggregation ability between hIAPP and Aβ25–35, this cross‐interaction had no significant impact on the self‐assembly of hIAPP. Our study may offer a better understanding for exploring the molecular mechanism of the association between AD and T2D observed in clinical and epidemiological studies and developing therapeutic strategies against amyloid diseases.  相似文献   

19.
20.
Prion diseases are fatal neurodegenerative diseases that can cause severe dementia.The misfolding and accumulation of the prion peptide (Pr P)106–126is crucial,and this process is closely relevant to biological membranes.However,how Pr P106–126aggregation is affected by the molecular chirality of phospholipid membrane is unknown.Thus,in this study,a pair of L-and D-aspartic acid (Asp)-modified 1,2-dipalmitoyl-sn–glycero-3-phosphoethanolamine (DPPE) were synthesized to const...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号