首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of cationic Methylene Blue (MB) and anionic Procion Crimson H-EXL (PC) dyes from aqueous medium on pyrophyllite was studied. Changes in the electrokinetics of pyrophyllite as a function of pH were investigated in the absence and presence of multivalent cations. The results show that pyrophyllite in water exhibits a negative surface charge within the range pH 2-12. Pyrophyllite is found to be a novel adsorbent for versatile removal of cationic and anionic dyes. The negative hydrophilic surface sites of pyrophyllite are responsible for the adsorption of cationic MB molecules. The adsorption of anionic PC dye is possible after a charge reversal by the addition of trivalent cation of Al. Nearly 2 min of contact time are found to be sufficient for the adsorption of both dyes to reach equilibrium. The experimental data follow a Langmuir isotherm with adsorption capacities of 70.42 and 71.43 mg dye per gram of pyrophyllite for MB and PC, respectively. For the adsorption of both MB and PC dyes, the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.  相似文献   

2.
Soumit S. Mandal 《Talanta》2010,82(3):876-884
Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here. Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO2 nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO2 nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH. Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology.  相似文献   

3.
4.
In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent.  相似文献   

5.
The adsorption behavior of the anionic dyes Remazol Brilliant Blue R (RBBR) and Reactive Black 5 (RB5) from aqueous solutions by polyethylenimine ozone oxidized hydrochar (PEI-OzHC) was investigated. The adsorption capacities of both dyes increased with functionalization of PEI in the hydrochar adsorbent. The results of surface characterization (FTIR, BET, TGA, elemental analysis, and SEM) showed that PEI modification greatly enhanced the adsorbent surface chemistry with a slight improvement of adsorbent textural properties. In addition, the adsorption kinetics data showed an excellent adsorption efficiency as reflected in the high removal percentages of the anionic dyes. The Isotherm results indicated that RBBR and RB5 dye adsorption occurred via monolayer adsorption, and chemisorption was the rate-controlling step. The PEI-OzHC adsorbent possesses higher maximum Langmuir adsorption capacity towards RBBR (218.3 mg/g) than RB5 (182.7 mg/g). This increase in adsorption capacity is attributed to the higher number of functional groups in RBBR that interact with the adsorbent. This study reveals the potential use of adsorbents derived from pine wood hydrochar in municipal as well as industrial wastewater treatment. Furthermore, surface chemistry modification is proven as an effective strategy to enhance the performance of biomass-derived adsorbents.  相似文献   

6.

Mesoporous magnesium oxide–graphene oxide composite (MGC) has been synthesized using a facile post-immobilization method by mixing pre-synthesized magnesium oxide (MgO) with graphene oxide (GO). MgO used for fabrication of the composite has been synthesized using an environment-friendly method involving gelatin as a template. XRD, Raman and EDX analyses have confirmed the presence of MgO and GO in the composite. FTIR and SEM analyses of synthesized MGC have further elucidated the surface functionalities and morphology, respectively. Using N2 adsorption–desorption isotherm, BET surface area of MGC has been calculated to be 55.9 m2 g?1 and BJH analysis confirmed the mesoporous nature of MGC. The application of synthesized MGC as a selective adsorbent for various toxic anionic dyes has been explored. Batch adsorption studies have been carried out to investigate the influence of different adsorption parameters on the adsorption of two anionic dyes: indigo carmine (IC) and orange G (OG). The maximum adsorption capacities exhibited by MGC for IC and OG are 252.4 and 24.5 mg g?1, respectively. Plausible mechanism of dye adsorption has been explained in detail using FTIR analysis. In a mixture of cationic and anionic dyes, MGC selectively adsorbs anionic dyes with high separation factors, while in binary mixtures of anionic dyes, both dyes are adsorbed efficiently. Thus, MGC has been shown to be a potential adsorbent for the selective removal of anionic dyes from wastewater.

  相似文献   

7.
The removal of textile dyes by adsorption onto carbon materials with extended mesoporosity is addressed in the present work. Two types of high surface area carbon adsorbents were prepared, namely a carbon xerogel and a templated carbon. Both materials were subsequently subjected to appropriate treatments in order to modify their surface chemistries, while keeping their textural properties relatively unchanged. The carbon adsorbents were extensively characterized by different techniques in order to correlate their adsorption performances with the corresponding surface properties. The behavior of the different materials was evaluated by determining equilibrium adsorption isotherms of two anionic dyes (Reactive Red 241 and Acid Blue 113) at different pH values. The results are compared with data previously obtained with commercial activated carbons subjected to the same treatments, and discussed in terms of the carbon surface chemistry and the interaction between the dye molecules and the adsorbent surface (dispersive and electrostatic interactions).  相似文献   

8.
Chemically synthesized conducting polyaniline (PANI) was investigated as adsorbent for its possible application in the removal of organic dyes, such as methylene blue (MB) and procion red (PR) from their aqueous solution. PANI adsorbent behaves as a charged surface upon post‐synthesis treatment of the polymer with acid and base. The adsorbent thus treated shows a high selectivity for the removal of dyes in the adsorption process. The Langmuir adsorption isotherm was used to represent the experimental adsorption data. The cationic dye, MB can be preferentially removed by the base‐treated PANI while the anionic dye, PR is predominately removed by the acid‐treated one. These observations were further evidenced from the measurements of molar conductance and pH of the dye solutions employed for adsorption. The finding can be explained considering the electrostatic nature of adsorption coupled with the morphology of the PANI surface thus treated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A novel adsorbent, bioglass nanospheres (BGN), has been prepared by a facile process. The BGN were spheres with an amorphous structure and a relatively high specific surface area, as indicated by SEM, transmission electron microscopy, BET, FTIR, and XRD. This paper was aimed at evaluating the adsorption behavior of this new material for the adsorptive removal of cationic (methylene blue, neutral red) and anionic (congo red) dyes from aqueous solution. The effects of the initial dye concentration, contact time, solution pH, and temperature were investigated. The adsorption kinetics showed that the adsorption behavior followed the pseudo-second-order kinetic model. The adsorption isotherm fit well to the Langmuir model. Thermodynamic analyses showed that the adsorption was physisorption, and it was also a spontaneous and endothermic process. The BGN exhibited a good reusability after five consecutive cycles for cationic dyes. In addition, the possible adsorption mechanism was also proposed based on the above experimental results.  相似文献   

10.
Acrylamide/itaconic acid (AAm/IA) hydrogels containing different quantities of itaconic acid have been irradiated with γ radiation. The hydrogels were used in an experiment concerning the adsorption of cationic dyes such as Basic Blue 9, Basic Violet 1 and Basic Blue 12. In the experiments of the adsorption of dyes from their synthetic aqueous solutions, type S adsorption isotherms were found. One mole of monomeric unit of AAm/IA hydrogels adsorbed 78.5–513.1 μmole of Basic Blue 9, 60.2–641.1 μmole of Basic Violet 1 and, 28.8–593.3 μmole of Basic Blue 12, while acrylamide hydrogel did not adsorb any cationic dye. As a result, it was shown that the AAm/IA hydrogels could be used as an adsorbent for water pollutants such as dyes, and immobilization of these organic contaminants in the hydrogels from waste water can solve one of the most important environmental problems of the textile industry. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
The present research combines biosorption and photocatalysis in a functional TiO(2)-immobilized chitosan adsorbent (CTA). CTA can degrade organic pollutants and adsorb metal ions simultaneously. Target pollutants were dyes of cationic (rhodamine B, Rh.B) and anionic (methyl orange, MO) nature, with Ni(2+) and Cu(2+) selected as heavy metals. The presence of Ni(2+) or Cu(2+) improved the degradation ability of CTA for MO, but inhibited the degradation of Rh.B, with Cu(2+) exhibiting stronger effects than Ni(2+). There was no significant difference in CTA activity when the metal ions were pre-adsorbed or when they coexisted in the solution with the organic dyes. Protons in the reaction system affected the degradation performance in a similar way for Ni(2+) and Cu(2+) leading to a different effect on the degradation for MO and Rh.B. An X-ray photoelectron spectroscopy analysis of the binding energies of the metal ions on the surface in the presence of the cationic or anionic dyes explained the different behaviors. Since anionic and cationic dyes possess chromogenic groups of different charges, they adversely affect the production of OH? radicals when coexisting with Cu(2+) or Ni(2+).  相似文献   

12.
Adsorption characteristics of cross-linked lysozyme crystals of different morphologies (tetragonal, orthorhombic, triclinic and monoclinic) were examined using four anionic dyes (fluorescein, eosin, erythrosin, and rose bengal), one zwitterionic dye (rhodamine B), and one cationic dye (rhodamine 6G). The adsorption isotherms were of the Langmuir type for all examined systems with the exception of rhodamine B adsorption by monoclinic crystals. The weakest adsorption was observed for the cationic dye, rhodamine B, whereas dianionic dyes, eosin, rose bengal, and erythrosin were strongly adsorbed on the protein surface. The adsorption capacities of the crystals for the dyes were found to depend on both charge and hydrophobicity of the dye, reflecting the heterogeneous character of the lysozyme pore surface. The adsorption affinity of the crystals for the dyes was a function of the dyes' hydrophobicity. Furthermore, the crystal morphology was identified as an additional factor determining capacity and affinity for dye adsorption. Differences between crystals prepared in the presence of the same precipitant were lower than between morphologies prepared with different precipitants.  相似文献   

13.
脱脂棉在碱存在下与环硫氯丙烷发生醚化反应,合成了一种环境功能材料--聚硫醚纤维素(PTCC)。 考察了溶液酸度对吸附容量的影响并研究了PTCC对3种阳离子染料的吸附动力学与热力学。 研究结果表明,中性介质较有利于吸附的进行;298 K、pH=7.0时,静态吸附2 h后,吸附趋于平衡,PTCC对碱性艳蓝B、碱性艳蓝R和夜蓝的饱和吸附量分别为726、652和320 mg/g;PTCC对阳离子染料的吸附过程符合Lagergren二级吸附动力学方程,吸附速率常数k2随着温度的降低而升高,低温有利于吸附反应的进行;吸附过程ΔG、ΔH和ΔS均为负值,表明该吸附是自发的放热过程,主要是通过范德华力实现的。 吸附过程的吸附等温模型符合Langmuir等温式,可以用单分子层吸附理论加以解释。  相似文献   

14.
Four adsorbents have been prepared from industrial wastes obtained from the steel and fertilizer industries and investigated for their utility to remove cationic dyes. Studies have shown that the adsorbents prepared from blast furnace sludge, dust, and slag have poor porosity and low surface area, resulting in very low efficiency for the adsorption of dyes. On the other hand, carbonaceous adsorbent prepared from carbon slurry waste obtained from the fertilizer industry was found to show good porosity and appreciable surface area and consequently adsorbs dyes to an appreciable extent. The adsorption of two cationic dyes, viz., rhodamine B and Bismark Brown R on carbonaceous adsorbent conforms to Langmuir equation, is a first-order process and pore diffusion controlled. As the adsorption of dyes investigated was appreciable on carbonaceous adsorbent, its efficiency was evaluated by comparing the results with those obtained on a standard activated charcoal sample. It was found that prepared carbonaceous adsorbent exhibits dye removal efficiency that is about 80-90% of that observed with standard activated charcoal samples. Thus, it can be fruitfully used for the removal of dyes and is a suitable alternative to standard activated charcoal in view of its cheaper cost.  相似文献   

15.
Waste material (carbon slurry), from fuel oil-based generators, was used as adsorbent for the removal of two reactive dyes from synthetic textile wastewater. The study describes the results of batch experiments on removal of Vertigo Blue 49 and Orange DNA13 from synthetic textile wastewater onto activated carbon slurry. The utility of waste material in adsorbing reactive dyes from aqueous solutions has been studied as a function of contact time, temperature, pH, and initial dye concentrations by batch experiments. pH 7.0 was found suitable for maximum removal of Vertigo Blue 49 and Orange DNA13. Dye adsorption capacities of carbon slurry for the Vertigo Blue 49 and the Orange DNA13 were 11.57 and 4.54 mg g(-1) adsorbent, respectively. The adsorption isotherms for both dyes were better described by the Langmuir isotherm. Thermodynamic treatment of adsorption data showed an exothermic nature of adsorption with both dyes. The dye uptake process was found to follow second-order kinetics.  相似文献   

16.
An alkaline membrane with full interpenetrating network (Full-IPN) with positive charge groups of uniform distribution was prepared as adsorbent for removal of Rhodamine B (RB) and Congo red (CR) in single and binary dye systems. Compared with single dye system, in binary dye systems a synergistic effect is due to the interaction between RB (cationic dyes) and CR (anionic dyes), which will impede the adsorption of CR or RB. Moreover, under the same experimental conditions, the magnitude of CR removal is better than that of RB in binary dye systems and that in the single system. The aforementioned phenomenon has resulted from one CR molecule bound to one RB molecule; the RB–CR binding occurred spontaneously, and the main binding forces between CR and RB were hydrogen bond and van der Waals interactions. Pseudo-second-order rate equation and Freundlich adsorption isotherm are with the better fit in single and binary dye systems for fitting the kinetic data. The results of ΔG, ΔH and ΔS revealed that the adsorption process for single and binary systems is endothermic and spontaneous. The electrostatic interaction between the dye and the quaternized ammonium groups present in membrane was identified as a major mechanism of the adsorption process.  相似文献   

17.
Fe-based metal-organic frameworks(Fe-BTC) were successfully synthesized in a large scale by using a simple one-pot method at room temperature. To understand its composition, texture and morphology, the as-synthesized material was analyzed systematically. Moreover, based on the adsorption property for anionic organic dyes(methyl orange, Congo red), cationic organic dves(methylene blue, rhodamine B) and heavy metal ions(Pb^2+) in aqueous solutions, it was revealed that the obtained Fe-BTC showed excellent capacities and adsorption rates tor different adsorbates. Besides the general adsorption eftect derived from the numerous pores and large specific surface area, the electrostatic forces and Л-Л interactions between benzene rings are believed to play significant roles in the large uptakes of this Fe-BTC sample. And the existence of mesopores in Fe-BTC might accelerate the adsorption.  相似文献   

18.

Organic dyes are used in many industries, e.g., textile, cosmetics and food. Hence, contamination of organic dyes to water sources is a critical issue. To reduce water pollution by organic dyes, we propose a paper-like adsorbent with a practical and economical production procedure. Subsequently, a flexible adsorbent was produced using a one-step approach by vacuum filtration of graphene oxide (GO) and iron oxide nanoparticles (Fe3O4-NPs) containing dispersion through a membrane and quoted as GO/Fe3O4 paper. For comparison, GO paper was also prepared using the same procedure. Both papers were characterized using UV–VIS absorption spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, electron diffraction X-ray analysis, X-ray photoelectron spectroscopy, and powder X-ray diffraction techniques. At the steady-state conditions, GO/Fe3O4 and GO papers were performed as adsorbent for cationic dyes of methylene blue, neutral red, and anionic dyes of methyl orange and fluorescein. In general, the removal efficiency of GO/Fe3O4 paper was higher than that of GO paper for adsorption of all dyes and this adsorbent revealed satisfactory adsorption properties for cationic dyes when compared to anionic dyes.

  相似文献   

19.
Adsorption and separation of toxic organic dyes are of great importance in wastewater treatment and dye recycling. In this work, cationic metal-organic framework MIL-140C–2NMe+ with triangular hydrophobic channels was prepared in which methyl groups were added to the pyridyl sites of the ligand [2,2'-bipyridine]-5,5'-dicarboxylic acid (H2bpydc) via post-synthetic alkylation reaction. MIL-140C–2NMe+ can be used as an efficient adsorbent for the selective adsorption and separation of anionic dyes in the aqueous mixture of cationic/anionic dyes. Specifically, the adsorption capacities of MIL-140C–2NMe+ for anionic methyl orange can reach 310 mg/g in 10 min. With a facile doctor-blading process, we have also polymerized the MIL-140C–2NMe+ nanocrystals and polyvinylidene fluoride (PVDF) polymer to fabricate a flexible and self-supporting mixed matrix membrane (MMM), which can selectively capture and separate the anionic organic dyes from the binary dye mixtures.  相似文献   

20.
The removal of cationic dyes, methylene blue(MB) and rhodamine B(RB), and anionic dyes, methyl or-ange(MO) and eosin Y(EY), from aqueous solutions by adsorption using Cu2Se nanoparticles(Cu2SeNPs) was studied. The effects of the initial pH values, adsorbent doses, contact time, initial dye concentrations, salt concentrations, and operation temperatures on the adsorption capacities were investigated. The adsorption process was better fitted the Langmuir equation and pseudo-second-order kinetic model, and was spontaneous and endothermic as well. The adsorption mechanism was probably based on the electrostatic interactions and π-π interactions between Cu2SeNPs and dyes. For an adsorbent of 0.4 g/L of Cu2SeNPs, the adsorption capacities of 23.1(MB), 22.9(RB) and 23.9(EY) mg/g were achieved, respectively, with an initial dye concentration of 10 mg/g(pH=8 for MB and pH=4 for RB and EY) and a contact time of 120 min. The removal rate of MB was still 70.4% for Cu2SeNPs being reused in the 5th cycle. Furthermore, the recycled Cu2SeNPs produced from selenium nanoparticles adsorbing copper were also an effective adsorbent for the removal of dyes. Cu2SeNPs showed great potential as a new adsorbent for dyes removal due to its good stability, functionalization and reusability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号