首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Faraday effect is measured in paramagnetic terbium gallate garnet Tb3Ga5O12 at a wavelength λ=0.63 μm at 6 K in pulsed magnetic fields up to 75 T increasing at a rate of 107 T/s for field orientation along the crystallographic direction 〈110〉. The experimental data are compared with the results of theoretical calculations taking into account the crystal fields acting on the Tb3+ ion and various contributions to the Faraday rotation. Since the measurements in pulsed fields are carried out in the adiabatic regime, the dependence of the sample temperature on the magnetic field acting during a current pulse is obtained from the comparison of the experimental dependence of Faraday rotation with the theoretically calculated dependences of the Faraday effect under isothermal conditions at various temperatures. __________ Translated from Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 2013–2017. Original Russian Text Copyright ? 2002 by Levitin, Zvezdin, Ortenberg, Platonov, Plis, Popov, Puhlmann, Tatsenko.  相似文献   

2.
The phase composition and the temperature dependence of the magnetization of the Er0.45Ho0.55Fe2 compound in coarse-grained, microcrystalline, and submicrocrystalline states are investigated experimentally. It is found that, upon heating under vacuum, the Er0.45Ho0.55Fe2 microcrystalline powder with a crystalline grain size of ∼1 μm undergoes decomposition into pure iron and rare-earth (erbium and holmium) oxides and nitrides at a temperature of 500 K. The changes observed in the phase composition of the microcrystalline powder due to annealing are confirmed by x-ray diffraction analysis. Heating of the Er0.45Ho0.55Fe2 submicrocrystalline sample leads to a partial change in the phase composition. The phase composition of a large crystal (∼1 mm in size) remains unchanged upon heating to 1080 K. It is shown that the thermal stability of the Er0.45Ho0.55Fe2 compound depends on the crystalline grain size. __________ Translated from Fizika Tverdogo Tela, Vol. 44, No. 6, 2002, pp. 1060–1063. Original Russian Text Copyright ? 2002 by Mulyukov, Sharipov, Korznikova.  相似文献   

3.
Chrysanthemum-like ZnO nanowire clusters with different Sb-doping concentrations were prepared by using the hydrothermal process. The microstructures, morphologies, and dielectric properties of the as-prepared products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM), and microwave vector network analyzer respectively. The results indicate that the as-prepared products are Sb-doped ZnO single crystallines with hexagonal wurtzite structure, the flower bud saturation degree Fd is obviously different from that of the pure ZnO nanowire clusters, the good dielectric loss property is found in Sb-doped ZnO products with low density, and the dielectric loss tangent tanδ e increases with the increase of the Sb-doping concentration in a certain concentration range.  相似文献   

4.
Observation of the 532 nm-laser-induced fluorescence spectra of two kinds of Cr:Mg2SiO4 crystalline samples grown in different atomsphere are reported. The experiments were con-ducted at both room temperature and liquid-nitrogen temperature. The fluorescence spectra of the two kinds of samples were different with respect to the polarizing direction of the inducing leser, and two emission bands with different polarized characters and various en-hancement in intensity at low temperatures were also found. In the light of the calculated results by Ms-Xα method, the main experimental results are explained.  相似文献   

5.
The insertion losses of silicon oxynitride (SiON) waveguides have been measured in the 1550 nm wavelength region. The waveguide structure consisted of a 2.0μm SiON waveguide core with a refractive index of 1.50, a 0.5μm SiO2 upper cladding and a 5.0μm SiO2 lower cladding with a refractive index of 1.45. It was found that the wavelength-dependent insertion losses of the waveguide were greatly reduced by annealing, and the loss was decreased more than 5.7 dB/cm at 1550 nm after annealing at optimum conditions. The former was attributed to the reduction of the absorption caused by N-H and Si-H vibration modes, and the latter was due to the improvement of the interface roughness and homogeneity in the waveguides after annealing.  相似文献   

6.
The samples Fe0.4Cu0.6 and Fe0.5Cu0.5 ball milled for 50 h are investigated by X-ray diffraction, M?ssbauer spectra, as well as magnetic measurement. The experiments show that the structure of the samples is fcc, with lattice constant 0.361 nm and there are fcc Fe-rich phase and fcc Cu-rich phase in the samples. Most of Fe atoms (91%) are in the fcc Fe-rich phase, which is a ferromagnetic phase. The M-H curve at 1.5 K shows the saturation magnetization of the samples are 80.5 emu/g and 101.6 emu/g for Fe0.4Cu0.6 and Fe0.5Cu0.5 respectively. The average magnetic moment of Fe atoms is deduced to be 2.40 μB . Compared with theoretical predication, the Fe atoms in the fcc phase are in high spin state.  相似文献   

7.
余万伦 《中国物理》1993,2(8):610-618
This paper presents high-order perturbation calculations for the zero-field splitting parameters D, F, and a of Fe3+-VCd pairs in RbCdF3 and CsCdF3 crystals doped with Fe3+ impurities. In comparison with experimental data, the present results are better than those obtained in previous work by using the phenomenological su-perposition model of spin-Hamiltonian. Moreover, the crystal fields arising from the Cd2+-vacancy and their induced crystal lattice distortion are analysed and calculated. It is found that the contribution from the Cd2+-vacancies cannot be ignored. Mena-while, we obtain that a ligand F- along the [001]-axis moves towards the central Fe3+ ion by Δ= 0.0020nm in RbCdF3 and 0.0028nm in CsCdF3. These results are quite different from Δ = 0.0104nm and Δ = 0.0112nm, respectively, obtained in previous work by using the superposition model of spin-Hamiltonian and ignoring the effect of the vacancy.  相似文献   

8.
MgxZn1-xO thin films have been prepared on silicon substrates by radio frequency magnetron sputtering at 60℃. The thin films have hexagonal wurtzite single-phase structure and a preferred orientation with the c-axis perpendicular to the substrates. The refractive indices of MgxZn1-xO films are studied at room temperature by spectroscopic ellipsometry over the wavelength range of 400--760\,nm at the incident angle of 70℃. Both absorption coefficients and optical band gaps of MgxZn1-xO films are determined by the transmittance spectra. While Mg content is increasing, the absorption edges of MgxZn1-xO films shift to higher energies and band gaps linearly increase from 3.24.eV at x=0 to 3.90\,eV at x=0.30. These results provide important information for the design and modelling of ZnO/ MgxZn1-xO heterostructure optoelectronic devices.  相似文献   

9.
The transformation of the spin structure of a high-spin Fe8 cluster in a strong magnetic field has been investigated. The magnetization and magnetic susceptibility of the material are calculated at different external magnetic fields and temperatures. It is shown that the magnetic field induces transformation of the spin structure of a Fe8 cluster from the quasi-ferrimagnetic structure with an average magnetic moment of 20 μB per molecule to the quasi-ferromagnetic structure with a magnetic moment of 40 μB. Unlike a similar transformation of a Néel ferrimagnet, which is continuous and occurs through an intermediate angular phase, this process in Fe8 at low temperatures manifests itself as a cascade of discrete quantum jumps, each being the transition accompanied by an increase in the spin number of the complex. At high temperatures, the behavior of the magnetic cluster approaches the cluster behavior described by the classical theory. The nature of quantum jumps is discussed in terms of the magnetic-field-induced energy level crossing in the ground state of a magnetic cluster. __________ Translated from Fizika Tverdogo Tela, Vol. 42, No. 6, 2000, pp. 1068–1072. Original Russian Text Copyright ? 2000 by Zvezdin, Plis, Popov.  相似文献   

10.
We have investigated, by X-ray diffraction, a series of single crystals of Bi-based oxides with the nominal composition Bi2Sr2(Cu1-zFez)O6+δ(0≤z≤0.55). In this system we observed two structural phase transitions with the increase of the doping content. The first transition, from an incommensurate monoclinic phase to an incommensurate orthorhombic phase, occurs at a doping content of iron zFe=0.027. The second one corresponds to a phase transition from an incommensurate orthorhombic phase to a commensurate orthorhombic phase at zFe=0.34. The comparison of these results with those for more limited substitutions of Zn and Ni indicates the significant role of the insertion of the extra oxygen in the (Bi-O) double layers.  相似文献   

11.
(Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe3O4, MnO2, ZnO, TiO2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm−3), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased.  相似文献   

12.
The low temperature microwave sintered NiCuZn and MgCuZn ferrites with compositions Ni0.35Cu0.05Zn0.60Fe2O4 and Mg0.35Cu0.05Zn0.60Fe2O4 were synthesized by conventional mixed oxide method. NiCuZn and MgCuZn ferrite samples obtained showed better sintered densities at 950 and 900 °C, respectively. The scanning electron micrographs of both the ferrite samples appear to be very much similar. The magnitude of initial permeability of MgCuZn ferrite samples is found to be obviously higher than those of NiCuZn ferrite samples at all sintering temperatures. This is mainly due to the fact that MgCuZn ferrite has smaller magnetocrystalline anisotropy constant and magnetostrictive constant. NiCuZn ferrites have higher saturation magnetization than MgCuZn ferrites, which is due to the higher magnetic moment of NiCuZn ferrites. Our results indicate that the microwave sintering method seems to be a potential technique in the MLCI technology.  相似文献   

13.
Measurements of the Faraday rotation of ErIG, Er3Fe5O12, have been performed in the 4.2–300 K temperature range in magnetic field up to 20 kOe applied along the [111] direction and at 1.15 μm wavelength. The results are analysed under the assumption that the contribution of the Fe3+ ions to the total Faraday rotation is the same as that of YIG, Y3Fe5O12. The temperature and field dependences of the contribution of the Er3+ ions are deduced. Both magnetic and electric dipole contributions of the Er3+ ions are calculated; the electric dipole coefficient Ce is found to present a linear temperature dependence between 30–300 K. The temperature dependence of the Faraday rotation susceptibility differs strongly from that of the magnetic susceptibility.  相似文献   

14.
Results are presented of an X-ray and neutron-diffraction investigation of the cation distribution as a function of the quenching temperature and isothermal-tempering duration for the ferrites Mg1.093Mn0.123Fe1,784O3.953 and Mg0.812Mn0.289Ni0.062Fe1.837O3.998. To describe the kinetics of the ion redistribution in tempering, equations are proposed which satisfactorily describe the experimental curves. The magnetic moment, Curie temperature, and coercive force are investigated as a function of quenching temperature. The experimental data obtained are satisfactorily accounted for by Néel's theory of ferromagnetism.  相似文献   

15.
Polycrystalline Mg0.6Cu0.4Fe2O4 ferrites have been prepared using solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and magnetic measurements.Using mean field theory and high-temperature series expansions (HTSE), extrapolated with the padé approximants method, the magnetic properties of Mg1−xCuxFe2O4 have been studied. The nearest neighbor super-exchange interactions for intra-site and inter-site of the Mg1−xCuxFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature Tc is calculated as a function of Mg concentration. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements.  相似文献   

16.
New polycrystalline specimens of the ferrites Mg1.5Fe1Si0.5O4, Mg1.5Fe1Ge0.5O4, Mg1.5Fe1Ti0.5O4 and Mg1.66Fe1Sb0.33O4 have been prepared and studied by nuclear gamma ray resonance technique, over a wide temperature range. All samples are monophasic spinel type ferrite with cubic symmetry. Mössbauer effect spectra of the composition containing Si4+ or Ge4+ show magnetic hyperfine splitting at room temperature, and Néel transition points are found around 750 and 570 K for the two compounds respectively. The spectrum of Mg1.5Fe1Ti0.5O4 is paramagnetic at 300 K while at 78 K shows a superposition of a broad six lines pattern and a central quadrupole doublet. The sample with pentavalent antimony exhibits a strong ferromagnetic relaxation at 78 K where it shows six broad lines with enhancement of the two inner lines as the temperature is risen. For all compositions the Mössbauer effect parameters are determined and cation distributions are deduced and its effect on the magnetic behaviour is discussed.  相似文献   

17.
The (Ni0.20Zn0.60Cu0.20)Fe1.98O4 ferrite was sintered using microwave sintering and conventional sintering technique, respectively. It was found that microwave sintering technique can effectively promote the forward diffusion of ions and thus accelerate the sintering process, resulting in the grain growth and the densification of matrix. At the low frequency of 100 kHz, the magnetizing contribution of domain wall motion is predominant, and compact and coarse matrixes are favorable for domain wall motion, giving rise to improvement of relative initial permeability and loss of ferrites. Using microwave sintering technique, for the (Ni0.20Zn0.60Cu0.20)Fe1.98O4 ferrite, the relative initial permeability μi of about 2000 and the relative loss factor tanδ/μi of about 8.7×10−6 at 100 kHz were achieved at only 980 °C sintering temperature. In addition, the sintering time of ferrites was reduced from 5 to 0.5 h by using microwave sintering technique.  相似文献   

18.
In this paper, the microwave-absorbing properties of (Ni1−xyCoxZny)Fe2O4 spinel ferrites have been investigated within the frequency range of 0.5–14 GHz. There are two kinds of resonance peaks observed in the permeability spectra: domain-wall resonances at lower frequency and spin-rotation resonances at higher frequency. The reflection loss (RL) calculations show that the prepared NiCoZn spinel ferrites are good electromagnetic (EM) wave absorbers in microwave range. In terms of the absorbing frequency band (AFB) and the matching thickness (tm), (Ni0.407Co0.207Zn0.386)Fe2O4 shows the best performances: tm=3.15 mm and the AFB is 8.64–11.2 GHz. Decreasing the weight ratio of NiCoZn ferrites in ferrites/wax composites, the matching thickness decreases and the AFB shifts to higher frequencies. Compared with the absorbers with single-layer ferrites, the absorbers with double-layers ferrites have better absorbing performances, such as a thinner matching thickness and a wider EM wave AFB.  相似文献   

19.
W-type barium hexaferrites with compositions of Ba1Co0.9Zn1.1Fe16O27 and Ba0.8La0.2Co0.9Zn1.1Fe16O27 were synthesized by the sol-gel method. The electromagnetic properties and microwave absorption behavior of these two ferrites were studied in the 2-18 GHz frequency range. The microstructure and morphology of the ferrites were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer. The XRD patterns show that the main phase of the Co2W ferrite forms without other intermediate phases when calcined at 1200 °C. The SEM images indicate that flake-like hexagonal crystals distribute uniformly in the materials. Both the magnetic and dielectric losses are significantly enhanced by partial substitution of La3+ for Ba2+ in the W-type barium hexaferrites. The microwave absorption property of the La3+ doping W-type hexaferrite sample is enhanced with the bandwidth below −10 dB around 8 GHz and the peak value of reflection loss about −39.6 dB at the layer thickness of 2 mm.  相似文献   

20.
Spinel ferrites can be used in magnetic targeting and microwave heating and can therefore be used for targeted and controllable drug delivery. We used the cetyltrimethylammonium bromide-assisted solvothermal method to synthesize a series of spinel ferrites (MxFe3-xO4, M=Mg, Mn, Fe, Co, Ni, Cu, Zn) with a mesoporous or hollow-mesoporous structure suitable for direct drug loading and the particle diameters ranging from 200 to 350 nm. We investigated the effects of M2+ cation on the morphology and properties of these products by analyzing their transmission electron microscopy images, mesoporous properties, magnetic properties, and microwave responses. We chose hollow-mesoporous MxFe3-xO4 (M=Fe, Co, Zn) nanoparticles, which had better overall properties, for the drug VP16 (etoposide) loading and microwave-controlled release. The CoxFe3-xO4 and Fe3O4 particles trapped 61.5 and 64.8%, respectively, of the VP16, which were higher than that (60.4%) of ZnxFe3-xO4. Controllable drug release by these simple magnetic nanocarriers can be achieved by microwave irradiation, and VP16-loaded CoxFe3-xO4 released the most VP16 molecules (more than 50% after 1 h and 69.1% after 6 h) under microwave irradiation. Our results confirm the favorable drug loading and microwave-controlled delivery by these ferrites, and lay a theoretical foundation to promote clinical application of the targeted controllable drug delivery system.
Graphical abstract In the present study, we prepared mesoporous or hollow-mesoporous spinel ferrites (MxFe3-xO4, M=Mg, Mn, Fe, Co, Ni, Cu, Zn) by CTAB-assisted solvothermal method and solved the problem of Cu and Ni impurities in CuxFe3-xO4 and NixFe3-xO4 products by means of magnetic separation and additional redox reactions, respectively. We investigated the effects of the M2+ cation on the morphology, mesoporous properties, magnetic properties, and microwave responses of these ferrites. Then, the drug loading and microwave-controlled drug release of hollow-mesoporous MxFe3-xO4 (M?=?Fe, Co, Zn) nanoparticles with better overall properties were also studied. CoxFe3-xO4 has the best overall performances for microwave-controlled drug release.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号