首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version ${\mathcal{G}}$ of this graph (Fisher in J Math Phys 7:1776–1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain ${\mathcal{G}_1}$ . Our main result consists in explicitly constructing CRSFs of ${\mathcal{G}_1}$ counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon’s critical weight function (Kenyon in Invent Math 150(2):409–439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.  相似文献   

2.
In this note, we prove that the free energies F g constructed from the Eynard–Orantin topological recursion applied to the curve mirror to ${\mathbb{C}^3}$ reproduce the Faber–Pandharipande formula for genus g Gromov–Witten invariants of ${\mathbb{C}^3}$ . This completes the proof of the remodeling conjecture for ${\mathbb{C}^3}$ .  相似文献   

3.
On a natural circle bundle ${\mathbb{T}(M)}$ over a 4-dimensional manifold M equipped with a split signature metric g, whose fibers are real totally null selfdual 2-planes, we consider a tautological rank 2 distribution ${\mathcal{D}}$ obtained by lifting each totally null plane horizontally to its point in the fiber. Over the open set where g is not antiselfdual, the distribution ${\mathcal{D}}$ is (2,3,5) in ${\mathbb{T}(M)}$ . We show that if M is a Cartesian product of two Riemann surfaces (Σ 1, g 1) and (Σ 2, g 2), and if ${g = g_{1} \oplus (-g_2)}$ , then the circle bundle ${\mathbb{T}(\Sigma_1 \times \Sigma_2)}$ is just the configuration space for the physical system of two surfaces Σ 1 and Σ 2 rolling on each other. The condition for the two surfaces to roll on each other ‘without slipping or twisting’ identifies the restricted velocity space for such a system with the tautological distribution ${\mathcal{D}}$ on ${\mathbb{T}(\Sigma_1 \times \Sigma_2)}$ . We call ${\mathbb{T}(\Sigma_1 \times \Sigma_2)}$ the twistor space, and ${\mathcal{D}}$ the twistor distribution for the rolling surfaces. Among others we address the following question: “For which pairs of surfaces does the restricted velocity distribution (which we identify with the twistor distribution ${\mathcal{D}}$ ) have the simple Lie group G 2 as the group of its symmetries?” Apart from the well known situation when the surfaces Σ 1 and Σ 2 have constant curvatures whose ratio is 1:9, we unexpectedly find three different types of surfaces that when rolling ‘without slipping or twisting’ on a plane, have ${\mathcal{D}}$ with the symmetry group G 2. Although we have found the differential equations for the curvatures of Σ 1 and Σ 2 that gives ${\mathcal{D}}$ with G 2 symmetry, we are unable to solve them in full generality so far.  相似文献   

4.
5.
The generalized volume conjecture and the AJ conjecture (a.k.a. the quantum volume conjecture) are extended to \({U_q(\mathfrak{sl}_2)}\) colored quantum invariants of the theta and tetrahedron graph. The \({\mathrm{SL}(2,\mathbb{C})}\) character variety of the fundamental group of the complement of a trivalent graph with E edges in S 3 is a Lagrangian subvariety of the Hitchin moduli space over the Riemann surface of genus g = E/3 + 1. For the theta and tetrahedron graph, we conjecture that the configuration of the character variety is locally determined by large color asymptotics of the quantum invariants of the trivalent graph in terms of complex Fenchel–Nielsen coordinates. Moreover, the q-holonomic difference equation of the quantum invariants provides the quantization of the character variety.  相似文献   

6.
The symmetric algebra ${S(\mathfrak{g})}$ over a Lie algebra ${\mathfrak{g}}$ has the structure of a Poisson algebra. Assume ${\mathfrak{g}}$ is complex semisimple. Then results of Fomenko–Mischenko (translation of invariants) and Tarasov construct a polynomial subalgebra ${{\mathcal {H}} = {\mathbb C}[q_1,\ldots,q_b]}$ of ${S(\mathfrak{g})}$ which is maximally Poisson commutative. Here b is the dimension of a Borel subalgebra of ${\mathfrak{g}}$ . Let G be the adjoint group of ${\mathfrak{g}}$ and let ? = rank ${\mathfrak{g}}$ . Using the Killing form, identify ${\mathfrak{g}}$ with its dual so that any G-orbit O in ${\mathfrak{g}}$ has the structure (KKS) of a symplectic manifold and ${S(\mathfrak{g})}$ can be identified with the affine algebra of ${\mathfrak{g}}$ . An element ${x\in \mathfrak{g}}$ will be called strongly regular if ${\{({\rm d}q_i)_x\},\,i=1,\ldots,b}$ , are linearly independent. Then the set ${\mathfrak{g}^{\rm{sreg}}}$ of all strongly regular elements is Zariski open and dense in ${\mathfrak{g}}$ and also ${\mathfrak{g}^{\rm{sreg}}\subset \mathfrak{g}^{\rm{ reg}}}$ where ${\mathfrak{g}^{\rm{reg}}}$ is the set of all regular elements in ${\mathfrak{g}}$ . A Hessenberg variety is the b-dimensional affine plane in ${\mathfrak{g}}$ , obtained by translating a Borel subalgebra by a suitable principal nilpotent element. Such a variety was introduced in Kostant (Am J Math 85:327–404, 1963). Defining Hess to be a particular Hessenberg variety, Tarasov has shown that ${{\rm{Hess}}\subset \mathfrak{g}^{\rm{sreg}}}$ . Let R be the set of all regular G-orbits in ${\mathfrak{g}}$ . Thus if ${O\in R}$ , then O is a symplectic manifold of dimension 2n where n = b ? ?. For any ${O\in R}$ let ${O^{\rm{sreg}} = \mathfrak{g}^{\rm{sreg}} \cap O}$ . One shows that O sreg is Zariski open and dense in O so that O sreg is again a symplectic manifold of dimension 2n. For any ${O\in R}$ let ${{\rm{Hess}}(O) = {\rm{Hess}}\cap O}$ . One proves that Hess(O) is a Lagrangian submanifold of O sreg and that $${\rm{Hess}} = \sqcup_{O\in R}{\rm{Hess}}(O).$$ The main result of this paper is to show that there exists simultaneously over all ${O\in R}$ , an explicit polarization (i.e., a “fibration” by Lagrangian submanifolds) of O sreg which makes O sreg simulate, in some sense, the cotangent bundle of Hess(O).  相似文献   

7.
The BES Collaboration measurements of J/ψ radiative decays into $ p{\bar p}$ indicate a strong enhancement at $ p {\bar p}$ threshold. In a related experiment a peak in the invariant π ?+? π ???η′ mass is observed. It is shown that both structures may be related to a broad $ N{\bar N}$ quasi-bound state in the $^{11}S_{0} $ wave. The existence of this state finds additional support from the antiprotonic atom level widths. It is also explained by a traditional model of $ N \bar{N} $ interactions based on G-parity transformation. The level widths in H, D and He antiprotonic atoms and the radiochemical studies of $ {\bar p}$ capture in nuclei indicate the existence of another near-threshold quasi-bound state in a P wave.  相似文献   

8.
In this paper the four-dimensional (4-D) space-velocity Cosmological General Relativity of Carmeli is developed by a general solution of the Einstein field equations. The Tolman metric is applied in the form 1 $$ ds^2 = g_{\mu \nu} dx^{\mu} dx^{\nu} = \tau^2 dv^2 -e^{\mu} dr^2 - R^2 \left(d{\theta}^2 + \mbox{sin}^2{\theta} d{\phi}^2 \right), $$ where g μν is the metric tensor. We use comoving coordinates x α = (x 0, x 1, x 2, x 3) = (τv, r, θ, ?), where τ is the Hubble-Carmeli time constant, v is the universe expansion velocity and r, θ and ? are the spatial coordinates. We assume that μ and R are each functions of the coordinates τv and r. The vacuum mass density ρ Λ is defined in terms of a cosmological constant Λ, 2 $$ \rho_{\Lambda} \equiv -\frac{ \Lambda } { \kappa \tau^2 }, $$ where the Carmeli gravitational coupling constant κ = 8πG/c 2 τ 2, where c is the speed of light in vacuum. This allows the definitions of the effective mass density 3 $$ \rho_{eff} \equiv \rho + \rho_{\Lambda} $$ and effective pressure 4 $$ p_{eff} \equiv p - c \tau \rho_{\Lambda}, $$ where ρ is the mass density and p is the pressure. Then the energy-momentum tensor 5 $$ T_{\mu \nu} = \tau^2 \left[ \left(\rho_{eff} + \frac{p_{eff}} {c \tau} \right) u_{\mu} u_{\nu} - \frac{p_{eff}} {c \tau} g_{\mu \nu} \right], $$ where u μ = (1,0,0,0) is the 4-velocity. The Einstein field equations are taken in the form 6 $$ R_{\mu \nu} = \kappa \left(T_{\mu \nu} - \frac{1} {2} g_{\mu \nu} T \right), $$ where R μν is the Ricci tensor, κ = 8πG/c 2 τ 2 is Carmeli’s gravitation constant, where G is Newton’s constant and the trace T = g αβ T αβ . By solving the field equations (6) a space-velocity cosmology is obtained analogous to the Friedmann-Lemaître-Robertson-Walker space-time cosmology. We choose an equation of state such that 7 $$ p = w_e c \tau \rho, $$ with an evolving state parameter 8 $$ w_e \left(R_v \right) = w_0 + \left(1 - R_v \right) w_a, $$ where R v = R v (v) is the scale factor and w 0 and w a are constants. Carmeli’s 4-D space-velocity cosmology is derived as a special case.  相似文献   

9.
We analyze the phenomenon of heavy quark condensation within the framework of the QCD sum rule approach. We discuss two alternative expansions for massive quark condensates. The first one (heavy to light quark expansion), introduced by Broadhurst and Generalis, establishes a connection between the heavy and light quark worlds. The other one (heavy quark expansion) is valid when only heavy quark systems are considered. As a byproduct we have obtained the coefficients of \(\left\langle {\bar qq} \right\rangle \) , \(\left\langle {\bar qGq} \right\rangle \) , 〈G 2〉 and 〈G 3〉 for all bilinear currents.  相似文献   

10.
We discuss the structure of renormalized Feynman rules. Regarding them as maps from the Hopf algebra of Feynman graphs to ${\mathbb{C}}$ originating from the evaluation of graphs by Feynman rules, they are elements of a group ${G=\mathrm{Spec}_{\mathrm{Feyn}}(H)}$ . We study the kinematics of scale and angle-dependence to decompose G into subgroups ${G_{\mathrm{\makebox{1-s}}}}$ and ${G_{\mathrm{fin}}}$ . Using parametric representations of Feynman integrals, renormalizability and the renormalization group underlying the scale dependence of Feynman amplitudes are derived and proven in the context of algebraic geometry.  相似文献   

11.
Let G be a connected Lie group, LG its loop group, and π : PG → G the principal LG-bundle defined by quasi-periodic paths in G. This paper is devoted to differential geometry of the Atiyah algebroid A = T (PG)/LG of this bundle. Given a symmetric bilinear form on ${\mathfrak{g}}$ and the corresponding central extension of ${L\mathfrak{g}}$ , we consider the lifting problem for A, and show how the cohomology class of the Cartan 3-form ${\eta \in \Omega^3(G)}$ arises as an obstruction. This involves the construction of a 2-form ${\varpi \in \Omega^{2}({\rm PG})^{\rm LG}= \Gamma(\wedge^2 A^*)}$ with ${{\rm d}\varpi=\pi^*\eta}$ . In the second part of this paper we obtain similar LG-invariant primitives for the higher degree analogues of the form η, and for their G-equivariant extensions.  相似文献   

12.
The features of the new interaction model ESC08c in ${\Lambda N}$ , ${\Sigma N}$ and ${\Xi N}$ channels are demonstrated single hyperon potentials ${U_Y(Y=\Lambda, \Sigma, \Xi)}$ in nuclear matter on the basis of the G-matrix theory. (K ?, K +) productions of ${\Xi}$ hypernuclei are studied with ${\Xi}$ -nucleus folding potentials.  相似文献   

13.
We study the production of charmed mesons (D) and baryons (?? c ) in antiproton-proton ${(\bar{p}p)}$ annihilation close to their respective production thresholds. The elementary charm production process is described by either baryon/meson exchange or by quark/gluon dynamics. Effects of the interactions in the initial and final states are taken into account rigorously. The calculations are performed in close analogy to our earlier study on ${\bar{p}p \to \bar{\Lambda} \Lambda}$ and ${\bar{p} p \to \bar{K} K}$ by connecting the processes via SU(4) flavor symmetry. Our predictions for the ${\bar{\Lambda}_c \Lambda_c}$ production cross section are in the order of 1 to 7 mb, i.e. a factor of around 10?C70 smaller than the corresponding cross sections for ${\bar{\Lambda} \Lambda}$ However, they are 100 to 1000 times larger than predictions of other model calculations in the literature. On the other hand, the resulting cross sections for ${\bar{D} D}$ production are found to be in the order of 10?2 ?C 10?1 ??b and they turned out to be comparable to those obtained in other studies.  相似文献   

14.
We give a proof of the existence of aC 2, even solution of Feigenbaum's functional equation $$g{\text{(}}x) = - \lambda _0^{ - 1} g{\text{(}}g( - \lambda _0 x)),g{\text{(0) = 1,}}$$ whereg is a map of [?1, 1] into itself. It extends to a real analytic function over ?.  相似文献   

15.
The AE?IS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy (Drobychev et al., 2007)), aims at directly measuring the gravitational acceleration g on a beam of cold antihydrogen ( $\overline{\rm H}$ ). After production, the $\overline{\rm H}$ atoms will be driven to fly horizontally with a velocity of a few 100 m/s for a path length of about 1 meter. The small deflection, few tens of μm, will be measured using two material gratings coupled to a position-sensitive detector working as a Moiré deflectometer similarly to what has been done with atoms (Oberthaler et al., Phys Rev A 54:3165, 1996). Details about the detection of the $\overline{\rm H}$ annihilation point at the end of the flight path with a position-sensitive microstrip detector and a silicon tracker system will be discussed.  相似文献   

16.
The dimer model is the study of random dimer covers (perfect matchings) of a graph. A double-dimer configuration on a graph ${\mathcal{G}}$ is a union of two dimer covers of ${\mathcal{G}}$ . We introduce quaternion weights in the dimer model and show how they can be used to study the homotopy classes (relative to a fixed set of faces) of loops in the double dimer model on a planar graph. As an application we prove that, in the scaling limit of the “uniform” double-dimer model on ${\mathbb{Z}^2}$ (or on any other bipartite planar graph conformally approximating ${\mathbb{C}}$ ), the loops are conformally invariant. As other applications we compute the exact distribution of the number of topologically nontrivial loops in the double-dimer model on a cylinder and the expected number of loops surrounding two faces of a planar graph.  相似文献   

17.
We have been performing Λ hypernuclear spectroscopic experiments by the (e,e′K +) reaction since 2000 at Thomas Jefferson National Accelerator Facility (JLab). The (e,e′K +) experiment can achieve a few 100 keV (FWHM) energy resolution compared to a few MeV (FWHM) by the (K ?, π ?) and (π +, K +) experiments. Therefore, more precise Λ hypernuclear structures can be investigated by the (e,e′K +) experiment. ${^{7}_{\Lambda}{\rm He}}$ , ${^{9}_{\Lambda}{\rm Li}}$ , ${^{10}_{\Lambda}{\rm Be}}$ , ${^{12}_{\Lambda}{\rm B}}$ , ${^{28}_{\Lambda}{\rm Al}}$ , and ${^{52}_{\Lambda}{\rm V}}$ were measured in the experiment at JLab Hall-C. In addition, ${^{9}_{\Lambda}{\rm Li}}$ , ${^{12}_{\Lambda}{\rm B}}$ , and ${^{16}_{\Lambda}{\rm N}}$ were measured in the experiment at JLab Hall-A.  相似文献   

18.
DIPTIMOY GHOSH 《Pramana》2012,79(4):895-898
A comprehensive study of the impact of new-physics operators with different Lorentz structures on decays involving the b ?? s ?? ?+? ?? ? transition is performed. The effects of new vector?Caxial vector (VA), scalar?Cpseudoscalar (SP) and tensor (T) interactions on the differential branching ratios, forward?Cbackward asymmetries (A FB??s), and direct CP asymmetries of ${\bar B}_{\rm s}^0 \to \mu^+ \mu^-$ , ${\bar B}_{\rm d}^0 \to$ $ X_{\rm s} \mu^+ \mu^-$ , ${\bar B}_{\rm s}^0 \to \mu^+ \mu^- \gamma$ , ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ , and ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ are examined. In ${\bar B}_{\rm d}^0\to {\bar{K}^*} \mu^+ \mu^-$ , we also explore the longitudinal polarization fraction f L and the angular asymmetries $A_{\rm T}^{(2)}$ and A LT, the direct CP asymmetries in them, as well as the triple-product CP asymmetries $A_{\rm T}^{\rm (im)}$ and $A^{\rm (im)}_{\rm LT}$ . While the new VA operators can significantly enhance most of the observables beyond the Standard Model predictions, the SP and T operators can do this only for A FB in ${\bar B}_{\rm d}^0 \to {\bar K} \mu^+ \mu^-$ .  相似文献   

19.
Theg-factor of the 2+ rotational state of184W was redetermined by an IPAC measurement in an external magnetic field of 9.45 (5)T as: $$g_{2^ + } (^{184} W) = + 0.289(7).$$ In the evaluation the remeasured half-life of the 2+ state: $$T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} (2^ + ) = 1.251(12)ns$$ was used. TDPAC-measurements with a sample of carrierfree184Re in high purity iron gave the hyperfine fields: $$B_{300 K}^{hf} (^{184} W_2 + \underline {Fe} ) = 70.1(21)T$$ and $$B_{40 K}^{hf} (^{184} W_{2^ + } \underline {Fe} ) = 71.8(22)T.$$ A comparison with the hyperfine field known from a spin echo experiment with183W g Fe leads to the hyperfine anomaly: $$^{184} W_{2^ + } \Delta ^{183} W_g = + 0.145(36).$$ The hyperfine splitting observed in a Mössbauer source experiment with another sample of carrierfree184m Re in high purity iron indicates that the smaller splitting, measured previously by a Mössbauer absorber experiment is due to the high tungsten concentration in the absorber. The new value for theg-factor of the 2+ state together with the result of the Mössbauer experiment allow an improved calibration for our recent investigation of theg R -factors of the 4+ and 6+ rotational states. The recalculated values are: $$g_{4^ + } (^{184} W) = + 0.293(23)$$ and $$g_{6^ + } (^{184} W) = + 0.299(43).$$ The remeasured 792-111 keVγ-γ angular correlation $$W(\Theta ) = 1 - 0.034(4) \cdot P_2 + 0.325(6) \cdot P_4 $$ gives for the mixing ratio of theK-forbidden 792keV transition: $$\delta ({{E2} \mathord{\left/ {\vphantom {{E2} {M1}}} \right. \kern-\nulldelimiterspace} {M1}}) = - \left( {17.6\begin{array}{*{20}c} { + 1.8} \\ { - 1.5} \\ \end{array} } \right).$$ A detailed investigation of the attenuation ofγ-γ angular correlations in liquid sources of184Re and184m Re revealed the reason for erroneous results of early measurements of the 2+ g R -factor: The time dependence of the perturbation is not of a simple exponential type. It contains an unresolved strong fast component.  相似文献   

20.
An investigation of inclusivepp→π?+? in terms of the covariant Boltzmann factor (BF) including the chemical potential μ indicates a) that the temperatureT increases less rapidly than expected from Stefan's law, b) that a scaling property holds for the fibreball velocity of π? secondaries, leading to a multiplicity law like ~E cm 1/2 at high energy, and c) that μπ is related to the quark mass: μπ=2m q ?m π the quark massm q determined by \(T_{\pi ^ - } \) at \(\bar pp\) threshold beingm q =3Tπ?330 MeV. Because ofthreshold effects \(T_{\bar p}< T_{\pi ^ - } \) , whereas \({{\mu _p } \mathord{\left/ {\vphantom {{\mu _p } {\mu _{\pi ^ - } }}} \right. \kern-0em} {\mu _{\pi ^ - } }} \simeq {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}\) as expected from the quark contents of \(\bar p\) and π. The antinuclei \(\bar d\) and \({{\bar t} \mathord{\left/ {\vphantom {{\bar t} {\overline {He^3 } }}} \right. \kern-0em} {\overline {He^3 } }}\) observed inpp events are formed by coalescence of \(\bar p\) and \(\bar n\) produced in thepp collision. Semi-empirical formulae are proposed to estimate multiplicities of π?, \(\bar p\) and antinuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号