首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new family of Ru(II) complexes containing the tridentate meridional 2,2':6',2'-terpyridine (trpy) ligand, a C(2)-symmetric didentate chiral oxazolinic ligand 1,2-bis[4'-alkyl-4',5'-dihydro-2'-oxazolyl]benzene (Phbox-R, R = Et or iPr), and a monodentate ligand, of general formula [Ru(Y)(trpy)(Phbox-R)](n+) (Y = Cl, H(2)O, py, MeCN, or 2-OH-py (2-hydroxypyridine)) have been prepared and thoroughly characterized. In the solid state the complexes have been characterized by IR spectroscopy and by X-ray diffraction analysis in two cases. In solution, UV/Vis, cyclic voltammetry (CV), and one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy techniques have been used. We have also performed density functional theory (DFT) calculations with these complexes to interpret and complement experimental results. The oxazolinic ligand Phbox-R exhibits free rotation along the phenyloxazoline axes. Upon coordination this rotation is restricted by an energy barrier of 26.0 kcal mol(-1) for the case of [Ru(trpy)(Phbox-iPr)(MeCN)](2+) thus preventing its potential interconversion. Furthermore due to steric effects the two atropisomers differ in energy by 5.7 kcal mol(-1) and as a consequence only one of them is obtained in the synthesis. Subtle but important structural effects occur upon changing the monodentate ligands that are detected by NMR spectroscopy in solution and interpreted by using their calculated DFT structures.  相似文献   

2.
The compounds ML2(NCS)2, (M(II)=Mn, Co), FeL2(NCS)2×2H2O, NiL3 NCS)2×3H2O (L=2,2'-bipyridine, 2-bipy) MX2(NCS)2×2H2O (M(II)=Mn, Fe; X=4,4'-bipyridine, 4-bipy) have been prepared and their IR spectra and molar conductivity studied. The thermal decomposition of the complexes was studied under non-isothermal conditions in air. During heating the hydrated complexes lose crystallization water molecules in one or two steps and then decompose via different intermediate compounds to the oxides Mn3O4, Fe2O3, CoO, NiO. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Enantioselective Friedel-Crafts alkylation reactions of a series of substituted indoles with methyl trifluoropyruvate, catalyzed by a chiral nonracemic C(2)-symmetric 2,2'-bipyridyl copper(II) triflate complex, are described. The corresponding 3,3,3-trifluoro-2-hydroxy-2-indole-3-yl-propionic acid methyl esters were formed in good yield and in high enantiomeric excess (up to 90%). This is the first report of the use of a chiral nonracemic 2,2'-bipyridyl ligand in catalytic and enantioselective Friedel-Crafts alkylation reactions. The structural characterization of a copper(II) chloride complex of the chiral 2,2'-bipyridyl ligand by X-ray crystallography is also presented. [reaction: see text]  相似文献   

4.
Two new ditopic ligands, 5,5"-azobis(2,2'-bipyridine) (5,5"-azo) and 5,5"-azoxybis(2,2'-bipyridine) (5,5"-azoxy), were prepared by the reduction of nitro precursors. Mononuclear and dinuclear Ru(II) complexes having one of these bridging ligands and 2,2'-bipyridine terminal ligands were also prepared, and their properties were compared with previously reported Ru(II) complexes having 4,4"-azobis(2,2'-bipyridine) (4,4"-azo). The X-ray crystal structure showed that 5,5"-azo adopts the trans conformation and a planar rodlike shape. The X-ray crystal structure of [(bpy)(2)Ru(5,5"-azo)Ru(bpy)(2)](PF(6))(4) (Ru(5,5"-azo)Ru) showed that the bridging ligand is in the trans conformation and nearly planar also in the complex and the metal-to-metal distance is 10.0 A. The azo or azoxy ligand in these complexes exhibits reduction processes at less negative potentials than the terminal bpy's due to the low-lying pi level. The electronic absorption spectra for the complexes having 5,5"-azo or 5,5"-azoxy exhibit an extended low-energy metal-to-ligand charge-transfer absorption. The ligands, 5,5"-azo and 5,5"-azoxy, and the mononuclear complex, [(bpy)(2)Ru(5,5"-azo)](2+), isomerize reversibly upon light irradiation. The low-energy MLCT state sensitizes the isomerization of the azo moiety in this complex. While [(bpy)(2)Ru(4,4"-azo)Ru(bpy)(2)](PF(6))(4) exhibits light switch properties, namely, significant electrochromism and a large luminescence enhancement, upon reduction, Ru(5,5"-azo)Ru does not show these properties. The radical anion formation upon reduction of these complexes has been confirmed by ESR spectroscopy.  相似文献   

5.
王鹏  袁艺  张密林  朱果逸 《分析化学》1999,27(6):648-652
用一维NMR方法研究了电化学发光物质六氟磷酸二(2,2'-联吡啶)·(4,4'-二甲基-2,2'-联吡啶)合钌(Ⅱ)的立体结构,借助二维1H-1H COSY和1H-13C COSY实验技术对其氢谱和碳谱进行了完全的归属,并给出了其氢谱和碳谱的化学位移值.  相似文献   

6.
C2-symmetric metallocenyl planar phosphinooxazoline ligands (2 and 3) have been applied in the Ru(II)-catalyzed asymmetric hydrogenation of simple ketones. This type of ligands enjoys the advantages of dual reaction sites as well as larger steric hindrance than their corresponding C1-symmetric counterparts. As a result, almost quantitative conversions and excellent enantioselectivities were obtained for a series of simple ketones. Under the optimal reaction conditions, up to 99.7% ee was obtained in many cases. It was also confirmed that hydrogen rather than reaction solvent i-PrOH is at work in the hydrogenation procedure.  相似文献   

7.
Complexes of the general formulae Mn(2-bpy)2(CCl3COO)2, Co(2-bpy)2(CCl3COO)2·H2O and Ni(2-bpy)2(CCl3COO)2·2H2O (where: 2-bpy=2,2'-bipyridine) have been prepared and characterized by VIS and IR spectroscopy, conductivity and magnetic measurements. The thermal properties of complexes in the solid state were studied under non-isothermal conditions in air atmosphere. During heating the complexes decompose via different intermediate products to the oxides Mn3O4, CoO and NiO. A coupled TG-MS system was used to detection the principal volatile products of thermal decomposition and fragmentation processes of obtained compounds. The principal volatile products of thermal decomposition of complexes are: H2O+, CO2 +, Cl2 + and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
A series of organometallic complexes possessing new tetrathia-[7]-helicene nitrile derivative ligands [TH-7] as chromophores, of general formula [MCp(P–P)(NC{TH-[7]-Y}Z)][PF6] (M = Ru, Fe, P–P = DPPE, Y = H, NO2, Z = H, C≡N; M = Ru, L–L = 2PPh3, Y = H, Z = H) has been synthesized and fully characterized. 1H NMR, FT-IR and UV–Vis. spectroscopic data were analyzed with in order to evaluate the existence of electronic delocalization from the metal centre to the coordinated ligand to have some insight on the potentialities of these new compounds as non-linear optical molecular materials. Slow crystallization of compound [RuCp(PPh3)2(NC{TH-[7]-H}H)][PF6] 2Ru revealed an interesting isomerization of the helical ligand with formation of two carbon-carbon bonds between the two terminal thiophenes, leading to the total closure of the helix (2*Ru).  相似文献   

9.
Jing B  Zhang M  Shen T 《Organic letters》2003,5(20):3709-3711
[structure: see text] A dyad of eosin and tris(2,2'-bipyridine)Ru(II) was prepared, and its photophysical properties were investigated. The photosensitization of eosin is greatly enhanced by introduction of tris(2,2'-bipyridine)Ru(II), which is verified via photooxygenation of anthracene derivatives. The electron-transfer mechanism of photosensitization is also discussed.  相似文献   

10.
11.
Two new bidentate ligands (1 and 2) with bicyclic guanidine moieties were synthesized and attached to a Ru(II)(bpy)(2) core (bpy = 2,2'-bipyridine) to afford complexes 3 and 4, which were characterized by spectroscopic and electrochemical methods. Complex 4 was further characterized by X-ray crystallography. In cyclic voltammetric studies, both complexes show a Ru(II/III) couple, which is 500 mV less positive than the Ru(II/III) couple of Ru(bpy)(3)(2+). The (1)MLCT and (3)MLCT states of 3 (560 nm/745 nm) and 4 (550 nm/740 nm) are significantly red-shifted with respect to Ru(bpy)(3)(2+) (440 nm/620 nm). Compounds 3 and 4 exhibit emission from a Ru(II)-to-bpy (3)MLCT state, which is rarely the emitting state at λ > 700 nm in [Ru(bpy)(2)(N-N)](2+) complexes.  相似文献   

12.
A detailed spectroscopic and electrochemical study of a series of novel phenolate bound complexes, of general formulas [M(L-L)(2)(box)](PF(6)), where M is Os and Ru, L-L is 2,2-bipyridine or 2,2-biquinoline, and box is 2-(2-hydroxyphenyl)benzoxazole, is presented. The objectives of this study were to probe the origin of the LUMOs and HOMOs in these complexes, to elucidate the impact of metal and counter ligand on the electronic properties of the complex, and to identify the extent of orbital mixing in comparison with considerably more frequently studied quinoid complexes. [M(L-L)(2)(box)](PF(6)) complexes exhibit a rich electronic spectroscopy extending into the near infrared region and good photostability, making them potentially useful as solar sensitizers. Electrochemistry and spectroscopy indicate that the first oxidation is metal based and is associated with the M(II)/(III) redox states. A second oxidative wave, which is irreversible at slow scan rates, is associated with the phenolate ligand. The stabilities of the oxidized complexes are assessed using dynamic electrochemistry and discussed from the perspective of metal and counter ligand (LL) identity and follow the order of increasing stability [Ru(biq)(2)(box)](+) < [Ru(bpy)(2)(box)](+) < [Os(bpy)(2)(box)](+). Electronic and resonance Raman spectroscopy indicate that the lowest energy optical transition for the ruthenium complexes is a phenolate (pi) to L-L (pi) interligand charge-transfer transition (ILCT) suggesting the HOMO is phenolate based whereas electrochemical data suggest that the HOMO is metal based. This unusual lack of correlation between redox and spectroscopically assigned orbitals is discussed in terms of metal-ligand orbital mixing which appears to be most significant in the biquinoline based complex.  相似文献   

13.
[formula: see text] [Cu(S,S)-t-Bu-box](OTf)2 (1) catalyzes the enantioselective amination of enolsilanes with azodicarboxylate derivatives. Isomerically pure enolsilanes of aryl ketones, acylpyrroles, and thioesters added to the azo-imide in greater than 95% ee. The use of an alcohol additive was critical to achieving catalyst turnover.  相似文献   

14.
Chiral nickel(II), zinc(II), manganese(II), and cobalt(II) complexes with C 2-symmetric 2,6-bis[4′-(R)-ethoxyoxazolin-2′-yl]pyridine were prepared, the single crystal of nickel(II) complex, [Ni((R,R)-Et-Py-box)(H2O)2Cl]Cl ((R,R)-Et-Pybox is 2,6-bis[4′-(R)-ethoxyoxazolin-2′-yl]pyridine), was obtained and indicated by X-ray diffraction analysis. The nickel(II) complex crystallizes in the orthorhombic system, space group P212121 with a = 7.7346(4) Å, b = 19.7133(13) Å, c = 25.8014(14) Å, V = 3934.1(4) Å3, Z = 8, and R = 0.0526 against 7010 reflections with I > 2σ (I). A feature of interest was noted in the unit cell of the compound, where two types of molecules exist, which similarly have a distorted octahedral geometry but only slightly differ in the orientation of the coordinated atoms to the central Ni atom. These two types of molecules interact with each other by O-H…Cl hydrogen bonds, giving rise to one dimensional ribbon structure.  相似文献   

15.
The effect of ionic diffusion on parameters of redox electrical conductivity in poly-[M(5-Cl-phen)3]2 + (M = Fe, Ru, Os) was studied.  相似文献   

16.
Ni J  Zhang X  Qiu N  Wu YH  Zhang LY  Zhang J  Chen ZN 《Inorganic chemistry》2011,50(18):9090-9096
Planar platinum(II) complexes Pt(bpyC≡CSiMe(3))(C≡CC(6)H(4)R-4)(2) (R = H (1), Bu(t) (2)) with 5-trimethylsilylethynyl-22'-bipyridine show an unusual, reversible, and reproducible mechanical stimuli-responsive color and luminescence switch. When crystalline 1 or 2 is ground, bright yellow-green emitting is immediately converted to red luminescence with an emission red shift of 121-155 nm for 1 or 53-89 nm for 2. Meanwhile, the crystalline state is transformed to an amorphous phase that can be reverted to the original crystalline state by organic vapor adsorbing or heating, along with red luminescence turning back to yellow-green emitting. The reversibility and reproducibility of luminescence mechanochromic properties have been dynamically monitored by the variations in emission spectra and X-ray diffraction patterns. The drastic grinding-triggered emission red shift is likely involved in the formation of a dimer or an aggregate through Pt-Pt interaction, resulting in a conversion of the (3)MLCT/(3)LLCT emissive state in the crystalline state into the (3)MMLCT triplet state in the amorphous phase. Compared with the drastic grinding-triggered emission red shift in 1 (121-155 nm), the corresponding response shift in 2 (53-89 nm) is much smaller since a bulky tert-butyl in C≡CC(6)H(4)bu(t)-4 induces the planar platinum(II) molecules to stack through a longer Pt-Pt distance and less intermetallic contact compared with that in 1, as suggested from EXAFS studies.  相似文献   

17.
Trigonal copper(I) complexes of the chiral bidentate ligand (1S,2S)-N,N'-Bis-(mesitylmethyl)-1,2-diphenyl-1,2-ethanediamine ((S,S)-1) have been prepared with hydrocarbon olefins, as well as with allylic alcohols and ethers. The stereochemistry of the complexes has been investigated by 1H NMR spectroscopy and by combined quantum mechanics and molecular mechanics (QM/MM) computational methods. The coordinated chiral nitrogen atoms can display equal (R, R) or opposite (R, S) configuration, the latter being disfavored if steric hindrance is present above and below the coordination plane. Although the complexes exist as rapidly equilibrated mixtures of stereoisomers, one of these is often dominant, and prochiral olefins are coordinated with high enantioface selection. In addition, the [(S,S)-1]-Cu+ fragment selectively recognizes the R enantiomer of secondary allylic alcohols and ethers, as confirmed by the X-ray crystal structure analysis of the adduct with (R)-1-buten-3-ol. The reasons for the observed selectivities have been elucidated, and lead to some implications which are consistent with the enantioselection observed in catalytic cyclopropanation reactions promoted by copper complexes of the same ligand.  相似文献   

18.
Pyridine-based ligands, such as 2,2'-bipyridine and 1,10-phenanthroline, have gained much interest in the fields of supramolecular chemistry as well as materials science. The appealing optoelectronic properties of their complexes with heavy d(6) transition metal ions, such as Ru(ii), Os(II), Re(I) and Ir(III), primarily based on the metal-to-ligand charge-transfer (MLCT) nature featuring access to charge-separated states, have provided the starting point for many studies in the field of dye-sensitized solar cells (DSSCs), organic light emitting diodes (OLEDs), artificial photosynthesis and photogenerated electron as well as energy transfer processes. This critical review provides a comprehensive survey over central advances in the field of soluble metal-containing macromolecules in the last few decades. The synthesis and properties of functionalized 2,2'-bipyridyine- and 1,10-phenanthroline-based d(6) metal complexes, in particular, their introduction into different prevailing polymeric structures are highlighted. In the most part of the review metal complexes which have been attached as pendant groups on the polymer side chain are covered. Selected applications of the herein discussed metal-containing macromolecules are addressed, particularly, with respect to photogenerated electron/energy transfer processes. In order to enable a deeper understanding of the properties of the ligands and metal complexes, the fundamentals of selected photophysical processes will be discussed (223 references).  相似文献   

19.
The stoichiometry and the kinetics of oxidation of the cyanide complexes M(CN)n4- (M = Fe(II), Ru(II), Os(II), Mo(IV), and W(IV)) by the peroxydisulfate ion, S2O8(2-), and by the much more strongly oxidizing fluoroxysulfate ion, SO4F-, were studied in aqueous solutions containing Li+. Reactions of S2O8(2-) with M(CN)n4- are known to be strongly catalyzed by Li+ and other alkali metal ions, and this applies also to the corresponding reactions of SO4F-. The primary reactions of S2O8(2-) and SO4F- have both been found to be one-electron processes in which the equally strong O-O and O-F bonds are broken. The primary reaction of S2O8(2-) consists of a single step yielding M(CN)n3-, SO4-, and SO42-, whereas the primary reaction of SO4F- comprises two parallel one-electron steps, one leading to M(CN)n3-, SO4-, and F- and the other yielding M(CN)n-1(2-), CN-, SO4- and F-. The relationship between the rate constants and the standard free energies of reaction for the Li+-catalyzed reactions of SO4F- and S2O8(2-) with M(CN)n(4-), and for the uncatalyzed reactions of S2O8(2-) with bipyridyl and phenanthroline complexes MLn2+ (M = Fe(II), Ru(II), and Os(II)) studied previously, suggests that the intrinsic barrier for all three sets of reactions is similar, i.e., unaffected by the Li+ catalysis, and that the electron transfer and the breakage of the O-O and O-F bonds are concerted processes.  相似文献   

20.
The mixed-ligand polypyridine ruthenium(II) complexes, [Ru(bpy)(2)(dmeb)](2+)(PF(6)(-))(2) (Ru(dmeb)(2+)) and [Ru(bpy)(2)(dbeb)](2+)(PF(6)(-))(2) (Ru(dbeb)(2+)), where bpy is bipyridine, dmeb is 4,4'-dimethyl ester-2,2'-bipyridine, and dbeb is 4,4'-dibutyl ester-2,2'-bipyridine, are synthesized and characterized, and their spectroscopic, electrochemical, and electroluminescent properties are reported. Both Ru(II) complexes showed strong emission from the triplet metal-to-ligand charge-transfer excited state, red-shifted emission spectra (lambda(max) = 642 nm), and good solubility in organic solvents compared to the frequently used tris(bipyridine) Ru(II) complexes. The electrochemical measurements for these Ru complexes showed reversible and quasi-reversible redox processes, implying a potential improvement in the stability of the electroluminescent device. The electrophosphorescent devices were fabricated by doping them in a polymer host using a simple solution spin-coating technique. For a single-layer device with the 1.0 wt % Ru(dbeb)(2+)-doped polymer blends of poly(vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol (PBD) as the emitting layer and with the metal Ba as the cathode, an external quantum efficiency of 3.0%, a luminous efficiency of 2.4 cd/A, and a maximum brightness of 935 cd/m(2) are reached with an electroluminescence (EL) spectral peak at 640 nm and Commission Internationale de L'Eclairage chromaticity coordinates of x = 0.64 and y = 0.33, which were comparable with standard red color.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号