首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
21 Physicochemical and quantum chemical parameters of 17 kinds of polycyclic aromatic hydrocarbons were calculated by using semi-empirical MOPAC AM1 method. By means of Partial Least Squares (PLS), quantitative structure-biodegradation relationship (QSBR) study was performed with the logarithm of specific biodegradation rates (logKb). The optimal model was obtained, and the result showed that the first-order molecular connectivity index (^1X), the energy of the lowest unoccupied molecular orbital (Elumo), logarithm of n-octyl alcohol/water partition coefficient (logP) and torsion energy (Et) are the dominant factors governing the biodegradability of polyeyelie aromatic hydrocarbons, and the effect of second-order valence molecular connectivity index (^2X^V), the third-order valence molecular connectivity index (^3X^V) and molar refractivity (Rm) should not be ignored.  相似文献   

2.
3.
Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure–biodegradation relationship (SBR) and quantitative structure–biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite? includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.  相似文献   

4.
The biodegradation of aromatic‐aliphatic biodegradable polyester poly (butylene adipate‐co‐terephthalate) (PBAT) was studied under mesophilic (37°C) and thermophilic (55°C) anaerobic conditions. Anaerobic sludge from municipal wastewater treatment plant was utilized as an inoculum. Non‐isothermal crystallization kinetics of PBAT before and after biodegradation was explored by differential scanning calorimetry. Under mesophilic anaerobic conditions (37°C), the biodegradation after 126 days was only 2.2%, molecular weight changed from 93 000 to 25 500 g/mol, and the crystallization behavior was changed only slightly. However, biodegradation under thermophilic anaerobic conditions (55°C) caused much bigger changes: biodegradation according to biogas production reached after 126 days 8.3%, molecular weight changed from 93 000 to 9430 g/mol, and the crystallization behavior was changed significantly. While Tm increased only slightly, Tc on the other hand increased significantly for the sample after biodegradation at 55°C. Also, the crystallization rate was slower (particularly at lower cooling rates), but crystallinity was slightly higher. The diffraction pattern was observed by X‐ray diffraction.  相似文献   

5.
TiO_2光催化降解氯酚类有机污染物的反应机理   总被引:3,自引:0,他引:3       下载免费PDF全文
氯酚类有机污染物具有较高毒性、难生物降解和强生物累积性等特点,成为较受关注的一类优先控制污染物.我们总结了氯酚TiO2光催化降解机理研究方面的最新进展,阐述了直接光解、·OH氧化、1O2氧化、O(3P)氧化、O2·氧化、导带电子还原和表面络合物电子转移等氯酚光降解途径与机理.重点讨论了O2在氯酚吸附、光催化降解乃至矿化过程中的重要作用.  相似文献   

6.
7.
The complete series of 19 bromophenols have been studied by density functional theory (DFT) calculations at the B3LYP/6-311G++(d,p) level. The molecular structures and properties of bromophenols are strongly influenced by intramolecular hydrogen bonding of ortho-bromine, steric and inductive effects of substituted bromine, and other intramolecular electrostatic interactions. Systematic trends in several structural parameters and molecular properties of bromophenols have been found with the increasing number of bromine substitutions, including increase in O-H bond length, decrease in C-O bond length, red shift in O-H stretching frequency, and blue shift in O-H torsional frequency. Correlations among several key molecular parameters as well as those with available aqueous pKa values are examined. Comparisons with chlorophenols have indicated that the inductive effect of substituted bromine appears larger and bromophenols are slightly stronger acids than chlorophenols.  相似文献   

8.
The photocatalytic degradation of chlorophenols was evaluated under direct solar radiation using commercial ZnO catalyst. Effects of several parameters such as a catalyst loading, pH of solution and initial concentration on the degradation process have been investigated. The photocatalytic degradation efficiency of chlorophenols at the optimum value of the parameters was compared under similar experimental conditions. The results of efficiency and mineralization showed the degradation of 2-chlorophenol and 2,4-dichlorophenol compound with the first order kinetic rate and the rate constant decreases as the initial concentration of the chlorophenols increase. However, the rate constant was strongly affected by type of chlorophenols compound present either 2-chlorophenol or 2,4-dichlorophenol. The highest removal of chlorophenols was obtained after 120 min and the final intermediate compounds of chlorophenols degradation are lower molecular weight compound consisting of acetic acid which was analyzed through the HPLC.  相似文献   

9.
用量子化学MNDO方法计算了不同结构类型的偶氮染料分子的电子结构.与厌氧活性污泥对偶氮双键生物降解实验结果对照分析后发现,分子电子结构中,电荷分布的对称性对偶氮键生物降解活性有重要影响.并通过LUMOlp(具有反应部位氮原子孤电子对特征的最低空轨道)及分子偶极矩阐述了电子结构与生物降解活性的关系.  相似文献   

10.
采用MOPAC-AM1法计算了15种取代苯分子的三种量化参数,用QSAR程序计算了两种物化参数及一种电性参数,结合德华半径RW,对log Kb进行了回归分析,得到如下最佳方程:log Kb=0.329 pK-10.48kw-12.995应用所得QSBR模式预测了15种有机物的生物降解性,并分析了降解机理。  相似文献   

11.
A simple practical method for predicting the acidity constants (as pKa values) of chlorophenols is proposed based on density functional theory calculations of a series of hydrogen-bonded complexes of phenol and 19 different congeners of chlorophenol, with a single probe molecule, either water or ammonia. Relevant structural parameters and molecular properties of these complexes, primarily involving the acidic hydroxyl group, are examined and plotted against the known pKa values of 14 chlorophenols and phenol. Strong linear correlations are found for these compounds. Such correlations are used to determine the pKa values of five chlorophenols whose experimental acidities have large uncertainties. Similar predicted pKa values are obtained by using different structural parameters and molecular properties for the complexes with either probe molecule. The study may be extended to determine the acidity of other compounds with a single acidic functional group.  相似文献   

12.
The properties of the low molecular weight polyhydroxybutyrate (LMWPHB) and LMWPHB plasticized polyhydroxybutyrate (PHB) are studied using differential scanning calorimetry (DSC), thermogravimetric analysis, wide-angle X-ray diffraction (WAXD), polarized optical microscope (POM), mechanical, and biodegradation tests. The results of DSC, WAXD, and POM indicate that LMWPHB has a lower glass transition temperature (T g), crystallinity, crystallization rate, melting temperature (T m), and crystal size than PHB due to its much smaller molecular weight. The tensile strength, T g, T m, crystallinity, crystallization rate, and thermal stability of LMWPHB plasticized PHB decrease, while the flexibility and biodegradation rate increase with the increasing content of the added LMWPHB. It is confirmed that LMWPHB can be used to improve the brittleness and control the biodegradation rate of PHB.  相似文献   

13.
A 15-L anaerobic fixed-film reactor (AFFR) was evaluated for treating a trade effluent containing inhibitory concentrations of persistent branched-chain fatty acids, namely 2-ethylhexanoic acid (2-EHA) and neopentanoic acid (NPA), at a total of 17,000 mg COD/L. The AFFR was packed with fire-expanded clay spheres, and start-up was accomplished in 60 d. The organic load was increased in steps from 1.1 to 8.5 g COD/L/d. Total COD, 2-EHA, and NPA removal efficiencies were maintained above 70, 98, and 75%, respectively. The reactor could recover from a shock load of 150% increase in organic load. Combined mechanisms of organic adsorption and biodegradation rendered the AFFR more stable with shock loads. Mathane gas produced from the process could be used for preheating the effluent.  相似文献   

14.
Some anaerobic bacteria can efficiently eliminate one or more halide atoms from halogenated compounds such as chlorophenols and chloroethenes through reductive dehalogenation. During this process, the bacteria utilize halogenated compounds as the terminal electron acceptors in their anaerobic respiration, called dehalorespiration, to yield energy for growth. Currently the genera of Desulfitobacterium and Dehalococcoides occupy the major part of the dehalorespiring isolates. The former can acquire energy not only by dehalorespiration but also by other respirations utilizing organic compounds and metals. In sharp contrast, the latter is specialized in dehalorespiration and plays a crucial role in the detoxification of chlorinated compounds in nature. From these bacteria, various reductive dehalogenases, which catalyze the dehalogenation reaction, were purified and their corresponding genes were identified. Most reductive dehalogenases exhibit similar features such as the presences of a Tat (twin arginine translocation) signal sequence, two Fe-S clusters, and a corrinoid cofactor. Some of dehalogenase-encoding genes are found to be flanked by insertion sequences. Thus, dehalogenase genes act as a catabolic transposon, and genetic rearrangements mediated by transposable elements occur well in dehalorespirers. Moreover, the genome sequences of some dehalorespiring bacteria provide many insights into the mechanism of dehalorespiration and the evolution of a dehalogenase gene.  相似文献   

15.
Lechner ML  Somogyi MA  Biró ML 《Talanta》1966,13(4):581-587
A quantitative method for the determination of chlorophenols and chlorophenoxyacetic acids in aqueous solutions is described. The samples investigated contained 2-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,6-trichlorophenol and their phenoxyacetic acid derivatives. The total amount of chlorophenols is determined by spectrophotometry, the ratio of individual chlorophenols by gas chromatography and the total quantity of phenoxyacetic acids by acidimetric titration. The determinations are carried out after extraction with diethyl ether, carbon tetrachloride and petroleum ether, respectively.  相似文献   

16.
Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a ‘10?day window’ criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the ‘10-day window’ criterion.  相似文献   

17.
Biodegradation plays a key role in the environmental risk assessment of organic chemicals. The need to assess biodegradability of a chemical for regulatory purposes supports the development of a model for predicting the extent of biodegradation at different time frames, in particular the extent of ultimate biodegradation within a '10 day window' criterion as well as estimating biodegradation half-lives. Conceptually this implies expressing the rate of catabolic transformations as a function of time. An attempt to correlate the kinetics of biodegradation with molecular structure of chemicals is presented. A simplified biodegradation kinetic model was formulated by combining the probabilistic approach of the original formulation of the CATABOL model with the assumption of first order kinetics of catabolic transformations. Nonlinear regression analysis was used to fit the model parameters to OECD 301F biodegradation kinetic data for a set of 208 chemicals. The new model allows the prediction of biodegradation multi-pathways, primary and ultimate half-lives and simulation of related kinetic biodegradation parameters such as biological oxygen demand (BOD), carbon dioxide production, and the nature and amount of metabolites as a function of time. The model may also be used for evaluating the OECD ready biodegradability potential of a chemical within the '10-day window' criterion.  相似文献   

18.
A drug stability experiment accelerated by compressed oxygen was established. The stability of 10% ascorbic acid solution as a model was studied and the kinetic parameters were obtained with the newly established experimental method. Because ascorbic acid degrades under both anaerobic and aerobic conditions, the total rate constant k(total) can be expressed as: k(total)=k(anaerobic) + k(aerobic), where k(anaerobic) and k(aerobic) are the rate constants of anaerobic and aerobic degradations, respectively. The k(anaerobic) can be expressed as k(anaerobic) = A(anaerobic) x exp(-E(a,anaerobic)/RT) according to Arrhenius equation, and the k(aerobic) was found to be k(aerobic) = A(aerobic) x exp(-E(a,aerobic)/RT) x p(O2) in our study.  相似文献   

19.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

20.
Research concentrated on the biodegradable capability of PCL blends with various types of starch in an anaerobic aqueous environment of mesophilic sludge from a municipal wastewater treatment plant. For blend preparation, use was made of a native starch Meritena from maize, another from Waxy – a genetically modified type of maize, as well as Gel Instant, a gelatinized starch, and an amaranth starch. Additional PCL/starch blends were prepared from the same starch types, but these were initially plasticized with glycerol. The biodegradability tests were supplemented with thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC); morphology was identified using scanning electron microscopy (SEM), plus mechanical properties were also tested. While mixtures of PCL with starches plasticized with glycerol exhibited improved mechanical properties and a higher degree of biodegradation in the anaerobic environment, mixtures of PCL with pure forms of starch were ascertained as rather resistant to the anaerobic aqueous environment. TGA and DSC analysis confirmed the removal of starch and glycerol from the PCL matrix. SEM then proved these results through the absence of starch grains in the samples following anaerobic biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号