首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The removal of phenol from aqueous solution was evaluated by using a nonfunctionalized hyper-cross-linked polymer Macronet MN200 and two ion exchange resins, Dowex XZ (strong anion exchange resin) and AuRIX 100 (weak anion exchange). Equilibrium experimental data were fitted to the Langmuir and Freundlich isotherms at different pHs. The Langmuir model describes successfully the phenol removal onto the three resins. The extent of the phenol adsorption was affected by the pH of the solution; thus, the nonfunctionalized resin reported the maximum loading adsorption under acidic conditions, where the molecular phenol form predominates. In contrast both ion exchange resins reported the maximum removal under alkaline conditions where the phenolate may be removed by a combined effect of both adsorption and ion exchange mechanisms. A theoretical model proposed in the literature was used to fit the experimental data and a double contribution was observed from the parameters obtained by the model. Kinetic experiments under different initial phenol concentrations and under the best pH conditions observed in the equilibrium experiments were performed. Two different models were used to define the controlling mechanism of the overall adsorption process: the homogeneous particle diffusion model and the shell progressive model fit the kinetic experimental data and determined the resin phase mechanism as the rate-limiting diffusion for the phenol removal. Resins charged after the kinetic experiments were further eluted by different methods. Desorption of nonfunctionalized resin was achieved by using the solution (50% v/v) of methanol/water with a recovery close to 90%. In the case of the ion exchange resins the desorption process was performed at different pHs and considering the effect of the competitive ion Cl. The desorption processes were controlled by the ion exchange mechanism for Dowex XZ and AuRIX 100 resins; thus, no significant effect for the addition of Cl under acidic conditions was observed, while under alkaline conditions the total recovery increased, specially for Dowex XZ resin.  相似文献   

2.
研究了阴离子交换树脂对水相中有机磷酸萃取剂的吸附。 通过比较不同的离子交换树脂对水相中2-乙基己基膦酸-单-2-乙基己基酯(P507)的去除率,发现大孔强碱性阴离子交换树脂(D201-OH)从水溶液中去除P507的能力最强,去除率可达99.24%。 而且当溶液在pH=1.0时,D201-OH对P507的吸附主要是分子吸附,其吸附等温线更适用于Langmuir模型;当溶液在pH=5.0时,阴离子交换反应占主导地位,其吸附等温线更适用于Freundlich模型。 研究还表明,D201-OH对P507的吸附在20 min内即达到吸附平衡时99.8%的吸附量。 通过动力学研究表明,拟一级动力学模型(R2>0.99)更适用于描述实验数据,并且吸附速率主要受膜扩散控制。 此外,吸附-解吸附循环8次后,D201-OH的吸附能力仍然保持在93%以上。 综上所述,D201-OH是有机磷酸类萃取剂的良好吸附剂,其吸附性能高效,循环过程稳定,因此可用于实际生产过程中回收有机磷酸萃取剂。  相似文献   

3.
刘峙嵘  韦鹏  周利民  曾凯 《应用化学》2007,24(4):420-424
应用同位素示踪技术,简要地研究了63Ni在泥煤中的静态吸附行为。结果表明,5 min后泥煤对63Ni的吸附率可达69%,60min后达到吸附平衡;第1吸附阶段内镍吸附量随时间的延长而增加,不易解吸;从泥煤-水液固体系中泥煤的电离平衡和镍离子-氢离子之间离子交换平衡,以及物料平衡关系推导出泥煤平衡时63Ni的吸附量和氢离子的浓度、平衡时镍离子的浓度有关。溶液的pH值对镍的吸附和解吸有很大影响,随着溶液pH值增大,63Ni由水分室向泥煤分室转移的速率常数也逐渐增大,而由泥煤分室向水分室转移的速率常数逐渐减小,二者比值逐渐增大,pH=4.624 6时,2种可逆传递速率常数相等,为2.51。即适宜pH值范围内的pH值升高吸附量增大,低pH值不利于吸附。63Ni在泥煤-水体系中的动态变化可用封闭二分室进行描述,经拟合后的理论值与实验数据点具有较好的一致性。  相似文献   

4.
Hydrogel is used as an adsorbent for the removal of dyes and heavy metals in waste water. In this work, different methods of synthesising novel hydrogels from liquid natural rubber (LNR) were investigated. The two different methods were ultrasonic-assisted polymerisation and heating under reflux. Through graft modification, LNR had initially combined with maleic anhydride (MaH) using benzoyl peroxide (BPO) as a radical initiator. After grafting, acrylic acid (AA) was crosslinked onto LNR-g-MaH using N,N-methylenebisacrylamide (MBA) and potassium persulfate (KPS) as a crosslinker and initiator, respectively. The best method between the two different techniques was identified via a five-level-two-factor response surface methodology (RSM). Higher adsorption percentage (93.34%) was observed in the ultrasonic technique. Meanwhile, the effects of adsorbent mass, dye concentration, pH solution and ionic strength were also investigated and results showed that different conditions were found to give different MG dye adsorption rates. The adsorption of MG dyes on hydrogel is dependent on pH and ionic strength solution. This action indicates an ion exchange mechanism. From an isotherm study, it was found that the Freundlich isotherm best fitted the adsorption of MG dyes. Furthermore, the adsorption kinetic data followed the pseudo-second order kinetic model and the reusability of hydrogel was also investigated.  相似文献   

5.
大孔树脂对磺酸类化合物吸附行为的研究   总被引:9,自引:0,他引:9  
用4种大孔树脂ND-022,ND-900,NDA-99和NDA-100作为吸附剂,分别对水溶液中甲基磺酸钠、苯磺酸钠、对甲基苯磺酸钠和2-萘磺酸钠等磺酸盐进行吸附.探讨了溶液的初始pH值对不同类型树脂吸附磺酸类物质的影响,并通过动态吸附实验研究了SO4^2-对树脂吸附磺酸盐的影响.实验结果表明,复合功能树脂NDA-99对磺酸类化合物具有良好的吸附性能,且其选择性优于弱碱树脂ND-900,这为进一步研究大孔树脂对磺酸类物质的吸附机理和实际工业应用提供了一定的理论依据。  相似文献   

6.
Phosphate removal from aqueous solution was investigated using ZnCl2-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3–10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.  相似文献   

7.
The effect of pH changes on the ability of the synthetic zeolite NaA to remove Cr(3+) from water by ion exchange was investigated. The exchange rate was improved by working near neutrality. Despite of the occurrence of simultaneous adsorption, precipitation or cation exchange phenomena, spectroscopic analyses of samples taken at different contact times suggested the presence of an unique chromium environment in the solid phase. The increase in pH observed during the ion exchange favored polymerization-precipitation of chromium species present in solution, which, in turn, improved the metal removal capacity of zeolite NaA above the values expected for a pure cationic exchange reaction.  相似文献   

8.
The presence of sulfonamide antibiotics in aquatic environments poses potential ecological risks and dangers to human health. In this study, porous resins as adsorbents for the removal of two sulfonamides, sulfadiazine and sulfadimidine, from aqueous solutions were evaluated. Activated carbon F-400 was included as a comparative adsorbent. Despite the different surface properties and pore structures of the three resins, similar patterns of pH-dependent adsorption were observed, implying the importance of sulfonamide molecular forms to the adsorption process on the resins. Sulfonamide adsorption to the three resins exhibited different ionic strengths and temperature dependence consistent with sulfonamide speciation and the corresponding adsorption mechanism. Adsorption of sulfadiazine to F-400 was relatively insensitive to pH and ionic strength as micropore-filling mainly contributed to adsorption. The adsorption mechanism of sulfadiazine to the hypercrosslinked resin MN-200 was similar to that of the macroporous resin XAD-4 at lower pH values, whereas it was almost identical to the aminated resin MN-150 at higher pH. This work provided an understanding of adsorption behavior and mechanism of sulfonamide antibiotics on different adsorbents and should result in more effective applications of porous resin for antibiotics removal from industrial wastewater.  相似文献   

9.
随着经济的快速发展,水污染已成为全球关注的紧迫问题。其中,Cr(VI)在废水中含量较高且毒性较强,可引起多种严重疾病。而大多数污染地表水和地下水的pH往往是接近中性的。因此,开发具有近中性pH值下有效去除Cr(VI)的吸附剂对生态系统和公众健康至关重要。本文设计并制备了具有不同结构的三氮唑鎓聚离子液体水凝胶,并将其应用于CrO42-的吸附和释放。该水凝胶可在中性条件下实现水中CrO42-的100%去除,最大吸附量高达356 mg/g。等温吸附结果表明,在较低浓度下CrO42-在聚离子液体水凝胶中为单层吸附。此外,可进一步通过离子交换将吸附于水凝胶中的CrO42-释放出来,实现吸附剂的再生。  相似文献   

10.
The effect of temperature and pH on the zeta potential of alpha-Al2O3 and adsorption of fluoride ions at the alpha-Al2O3/aqueous solution interface has been investigated through electrophoretic mobility measurements and adsorption studies, to delineate mechanisms involved in the removal of fluoride ions from water using alumina as adsorbent. When the temperature increases from 10 to 40 degrees C, the pH of the point of zero charge (pH(pzc)) shifts to smaller values, indicating proton desorption from the alumina surface. The pH(pzc) increases linearly with 1/T, which allowed estimation of the standard enthalpy change for the surface-deprotonation process. Fluoride ion adsorption follows a Langmuir-type adsorption isotherm and is affected by the electric charge at the alpha-Al2O3/aqueous solution interface and the surface density of hydroxyl groups. Such adsorption occurs through an exchange between fluoride ions and surface-hydroxyl groups and it depends on temperature, pH, and initial fluoride ion concentration. At 25 and 40 degrees C, maximum fluoride adsorption density takes place between pH 5 and 6. Increasing the temperature from 25 to 40 degrees C lowers the adsorption density of fluoride.  相似文献   

11.
Amine-functionalized adsorbents have attracted increasing interest in recent years for heavy metal removal. In this study, diethylenetriamine (DETA) was successfully grafted (through a relatively simple solution reaction) onto poly(glycidyl methacrylate) (PGMA) microgranules to obtain an adsorbent (PGMA-DETA) with a very high content of amine groups and the PGMA-DETA adsorbent was examined for copper ion removal in a series of batch adsorption experiments. It was found that the PGMA-DETA adsorbent achieved excellent adsorption performance in copper ion removal and the adsorption was most effective at pH>3 in the pH range of 1-5 examined. X-ray photoelectron spectroscopy (XPS) revealed that there were different types of amine sites on the surfaces of the PGMA-DETA adsorbent but copper ion adsorption was mainly through forming surface complexes with the neutral amine groups on the adsorbent, resulting in better adsorption performance at a higher solution pH value. The adsorption isotherm data best obeyed the Langmuir-Freundlich model and the adsorption capacity reached 1.5 mmol/g in the case of pH 5 studied. The adsorption process was fast (with adsorption equilibrium time less than 1-4 h) and closely followed the pseudo-second-order kinetic model. Desorption of copper ions from the PGMA-DETA adsorbent was most effectively achieved in a 0.1 M dilute nitric acid solution, with 80% of the desorption being completed within the first 1 min. Consecutive adsorption-desorption experiments showed that the PGMA-DETA adsorbent can be reused almost without any loss in the adsorption capacity.  相似文献   

12.
In this study, Chitosan and Chitosan-zinc oxide (ZnO) nanocomposite were prepared and applied as a low-cost adsorbent with high adsorption capacity for removing reactive red 198 (RR 198) dye from contaminated water. After preparation, it was characterized using FT-IR, XRD, and SEM. The effect of pH, temperature, time, adsorbent amount, and initial dye concentration were investigated in the removal efficiency of RR 198. The maximum adsorption capacity (qm) obtained from the Langmuir equation was 172.41 mg/g in adsorbent dose of 0.1 g/L, pH: 4, temperature of 25°C, adsorption time of 40 min. The thermodynamic parameters demonstrated the spontaneous and endothermic nature of the adsorption process. Due to the high efficiency of chitosan/ZnO nanocomposite in removal of RR 198 from water and advantages such as high adsorption capacity, simple synthesis, and easy application, it can be used as an effective method in the removal of RR 198 from water.  相似文献   

13.
In this work, a synthetic hydroxyapatite, Bio-gel HTP, marketed by BIO-RAD®, has been studied in order to propose a method to remove the excess fluoride present in drinking water. The removal of fluoride ions by this adsorbent has been studied as a function of solution pH, and fluoride ion concentration. Experiments of fluoride ions sorption have been carried out with the use of 18F radiotracer in solutions of NaF at several concentrations with an ion selective electrode used for fluoride analysis. The adsorption isotherms show that the best fluoride adsorption on hydroxyapatite occurs at a pH range of 7.0–7.5. At this pH value the solid presents an important capacity of subtraction of fluoride, of around of 100 mmol/100 g.  相似文献   

14.
浮石负载壳聚糖吸附去除水中丙溴磷   总被引:1,自引:0,他引:1  
彭炳先  周爱红 《应用化学》2017,34(4):464-471
通过浮石负载壳聚糖制备了吸附剂壳聚糖/浮石复合物,采用扫描电子显微镜(SEM)、热重分析(TGA)、元素分析、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)和X射线荧光光谱(XRF)等技术手段表征了吸附剂性质,考察了吸附剂量、吸附时间、溶液pH值、离子强度和温度对该吸附剂吸附去除水中丙溴磷的影响,研究了再生吸附剂的吸附性能。结果表明,负载在浮石上的壳聚糖占吸附剂总量的8.69%;在p H值3.0~7.0内,壳聚糖/浮石对丙溴磷的吸附率大于90%;这种吸附剂对丙溴磷的吸附受溶液离子强度影响较小,随温度升高而稍微减小。在溶液温度25℃、pH=7.0、丙溴磷浓度40 mg/L、壳聚糖/浮石剂量为0.7 g/L和吸附平衡时间为90 min条件下,此吸附剂对丙溴磷最大吸附率为93.3%(最大吸附量为53.4 mg/g)。壳聚糖/浮石连续经过3次吸附/再生循环,每次循环对丙溴磷的吸附率下降约12%。可见壳聚糖/浮石通过吸附可有效地去除水中的农药丙溴磷。  相似文献   

15.
Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800g/mol or PEI 25000g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.  相似文献   

16.
磁性树脂(MIEX)作为一种新型强碱型阴离子交换树脂能够通过离子交换作用去除水体中天然有机物和无机阴离子。与传统离子交换树脂相比,MIEX具有吸附速率快,易再生等优势,正逐渐应用于饮用水净化与深度处理领域。论文综述了MIEX的主要理化特性;在水处理中的应用效果,包括对目标污染物的去除以及受溶液pH值,温度,竞争吸附离子等的影响;阐述了MIEX与混凝、活性炭、膜滤等常规处理工艺集成的可行性及优势;最后对MIEX和磁性树脂技术在国内饮用水处理应用过程中面临的问题提出了建议和展望。  相似文献   

17.
A simple and efficient method for separation and determination of inorganic arsenic (iAs) and organic arsenic (oAs) in drinking, natural and wastewater was developed. If arsenic is present in water prevailing forms are inorganic acids of As(III) and As(V). oAs can be found in traces as monomethylarsenic acid, MMA(V), and dimethylarsenic acid, DMAs(V). Three types of resins: a strong base anion exchange (SBAE) and two hybrid (HY) resins: HY-Fe and HY-AgCl, based on the activity of hydrated iron oxides and a silver chloride were investigated. It was found that the sorption processes (ion exchange, adsorption and chemisorptions) of arsenic species on SBAE (ion exchange) and HY resins depend on pH values of water. The quantitative separation of molecular and ionic forms of iAs and oAs was achieved by SBAE and pH adjustment, the molecular form of As(III) that exists in the water at pH <8.0 was not bonded with SBAE, which was convenient for direct determination of As(III) concentration in the effluent. HY-Fe resin retained all arsenic species except DMAs(V), which makes possible direct measurements of this specie in the effluent. HY-AgCl resin retained all iAs which was convenient for direct determination of oAs species concentration in the effluent. The selective bonding of arsenic species on three types of resins makes possible the development of the procedure for measuring and calculation of all arsenic species in water. In order to determine capacity of resins the preliminary investigations were performed in batch system and fixed bed flow system. Resin capacities were calculated according to breakthrough points in a fixed bed flow system which is the first step in designing of solid phase extraction (SPE) module for arsenic speciation separation and determination. Arsenic adsorption behavior in the presence of impurities showed tolerance with the respect to potential interference of anionic compounds commonly found in natural water. Proposed method was established performing standard procedures: with external standard, certified reference material and standard addition method. Two analytical techniques: the inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy-hydride generation (AAS-GH) were comparatively applied for the determination of arsenic in all arsenic species in water. ICP-MS detection limit was 0.2 μg L−1 and relative standard deviation (RSD) of all arsenic species investigated was between 3.5 and 5.1%.  相似文献   

18.
The interactions of BSA with an anion-exchange adsorbent have been studied to aid in the understanding of protein adsorption in ion-exchange chromatography. Linear chromatography, flow microcalorimetry and isotherm measurements were used to analyze adsorption energetics in the linear and overloaded regions of the equilibrium isotherm. The effects of salt type, salt and protein concentration, and temperature are reported. It was observed that under all conditions studied the adsorption process was entropically driven. This was contrary to expectations, since at the pH selected ion exchange is expected to dominate. A major driving force for the adsorption of BSA on the anion exchanger was concluded to be the increase in entropy from the release of water due to interactions between hydrophobic regions on the protein and adsorbent. The data further suggest that the conformational entropy change accompanying protein adsorption on the ion exchanger may also be significant.  相似文献   

19.
Nano-bentonite was used as an adsorbent to remove nickel ions from aqueous solutions. Experimental investigation was carried out to identify the effect of pH, contact time, initial concentration, and adsorbent dose of Ni(II). Equilibrium data were described by and fitted to Langmuir, Freundlich, and Dubinin–Radushkevich models. Results showed that the optimum conditions for the removal of the Ni(II) are initial concentration 100 mg/L, adsorbent dose 0.5 g, and pH 6. Surface morphology and functionality of nano-bentonite were characterized by SEM and FTIR. The kinetics data were more accurately described by pseudo-second-order model. The intra-particle diffusion model gave multi-linear curves, so more than one step controlled the adsorption process. Nano-bentonite removed nickel with maximum adsorption capacity of 39.06 mg/g (30°C, pH) and thermodynamic data indicated that adsorption reaction is spontaneous and of an endothermic nature.  相似文献   

20.
Granular Activated Carbon (GAC), a commercial adsorbent for the removal of heavy metals was treated chemically with potassium bromate for it’s surface modification and it’s adsorption capacity was investigated with nickel ions. There was an increase in the adsorption capacity of the modified carbon by 90–95% in comparison to the raw granular activated carbon towards nickel ion adsorption. Potassium Bromate oxidation treatment was employed for a period of about 30 mins initially followed by 60 mins and the oxidized carbons were adsorbed with nickel ions. Metal sorption characteristics of as received and modified activated carbons were measured in batch experiments. Batch adsorption was successfully modeled by Langmuir Isotherm Model which indicates monolayer adsorption. The adsorption isotherms also fit well to the Freundlich Model. Effects of pH of initial solution, time of oxidation and mode of treatment on the adsorption process were studied. Experimental results showed that metal uptake increased with an increase in pH and oxidation time. The samples were characterized by Scanning Electron Microscope (SEM) studies and surface area analyzer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号