首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
采用X射线衍射法研究了LaNi5 .1 5 ,La(NiSn) 5 .1 4 ,La(NiSnCo) 5 .1 2 ,La(NiSnMn) 5 .1 2 ,La(NiSnCoMnAl) 5 .1 0 5种AB5 型非化学计量贮氢合金的结构。发现主物相中并未产生第二物相 ,AB5 型贮氢合金中B原子数发生正偏移时 ,晶胞体积减小 ,当B侧含有取代元素时 ,这种变化更加明显。对于非化学计量贮氢合金而言 ,少量Sn取代Ni后 ,晶胞体积大大提高。Mn ,Co和Al的加入也会影响晶胞常数。Sn ,Co ,Mn ,Al均会降低贮氢合金放氢平台压力。  相似文献   

2.
AB5型非化学计量贮氢合金电极过程动力学研究   总被引:6,自引:0,他引:6  
为了探明取代元素对非化学计量AB5型贮氢合金氢化物电极充放电性能的影响因素,对LaNi5.15,La(NiSn)5.14,La(NiSnCo)5.12,La(NiSnMn)5.12和La(NiSnCoMnAl)5.10开展了电极过程动力学的研究。采用线性极化的方法,控制电极过电势小于5mV,测量出不同荷电容量下电化学反应的交换电流密度。电极在满充电状态下i0并非最大,当电极部分放电后该值达到最大。对Co,Mn或Al部分取代形成的非化学计量多元贮氢合金的交换电流密度研究表明,Co有利于提高i0,而Mn和Al不利于提高i0。当氢化物电极中贮氢容量较小时,电极反应的交换电流密度与电极中贮氢容量存在对数值的线性关系。对于具有几乎一致的电极反应电子传递系数β的La(NiSn)5.14,La(NiSnCo)5.12,La(NiSnMn)5.12,La(NiSnCoMnAl)5.10氢化物电极,造成交换电流密度差异来源于热力学吸附平衡常数K0与反应活化能W0。含Al贮氢合金K0较低,这是影响交换电流密度的主要因素。对K0值接近的3种贮氢合金La(NiSn)5.14,La(NiSnCo)5.12,La(NiSnMn)5.12,活化能W0是造成交换电流密度不同的主要原因。  相似文献   

3.
含锡AB5型非化学计量贮氢合金Ⅱ.电化学性能   总被引:3,自引:3,他引:0  
研究了几种AB5非化学计量贮氢合金的电化学性能,及在低电流密度与电高流密度放电下了代元素对放电比容量、活化性能及循环寿命的影响。Sn,Co,Mn的加入有利于提高合金的电化学氢容量,La(NiSn)5.14,La(NiSnCo)5.12和(NiSnMn)5.12具有相同的电化学贮氢容量与活性特性。尽管La(NiSn)5.14大电流电性能优于La(NiSnCo)5.12和La(NiSnMn)5.12,  相似文献   

4.
研究了几种AB5非化学计量贮氢合金的电化学性能 ,及在低电流密度与高电流密度放电下取代元素对放电比容量、活化性能及循环寿命的影响。Sn ,Co,Mn的加入有利于提高合金的电化学贮氢容量 ,La(NiSn) 5.14 ,La(NiSnCo) 5.12 和La(NiSnMn) 5.12 具有相同的电化学贮氢容量与活化特性。尽管La(NiSn) 5.14 大电流放电性能优于La(NiSnCo) 5.12 和La(NiSnMn) 5.12 ,但其寿命短。Mn ,Co和Al可大大提高合金的使用寿命。La(NiSnCo) 5.12 被认为是一种理想的贮氢合金。  相似文献   

5.
低钴AB5型稀土系贮氢电极合金的研究   总被引:5,自引:0,他引:5  
为了进一步降低AB5型混合稀土系贮氢合金的成本,采用Cr,Si,Cu替代Co和调节化学计量比的方法制备低钴AB5型贮氢合金。结果表明:3种取代元素在寿命方面的效果依次为Si>Cr>Cu,在放电容量和活化性能方面依次是Cu>Cr>Si。Cr,Cu,Si只有少量的替代才可能发挥其有利影响;通过非化学计量比的调节,低钴混合稀土系贮氢电极合金的放电容量、活化性能及倍率放电能力都能较好地达到实用要求,但是循环寿命有待提高。  相似文献   

6.
在金属氢化物一镍电池(MH/Ni)负极材料中,ABS型贮氢合金是非常具有吸引力的一种,以AB。型贮氢合金作为负极材料的MH/Ni电池目前已大批量进入市场.其中A代表混合稀土RE(主要成分为La,Ce,Pr,Nd);B代表Ni和Co,Mll,AI等取代元素.B侧取代元素已被广泛研究D,习,A侧混合稀土的成分也已引起人们的广泛重视*‘,’],*血1c等【阿针对儿一N13。5C00.75Mll。。A10.3,详细研究了L31。CI。BS系列合金,得出在。=0.2处合金具有较好的综合性能.本文针对B侧Ni。。。Coo,。Mno、。Alo二。(记为民)成分,在研…  相似文献   

7.
8.
本文对镍氢动力电池用AB5型纳米晶贮氢合金热处理工艺进行了研究.分别采用X射线衍射、金相、PCI测试手段分析热处理后贮氢合金的微观结构与吸放氢动力学性能.贮氢合金的电性能测试结果表明,经过950℃×6 h热处理的贮氢合金,10C放电比容量可以达到241mAh/g,循环寿命大于500次,分别以7C,10C放电,高倍率放电率(HRD)为92.5%,85.2%.将贮氢合金粉组装成电池进行测试,2min后,放电平台电压为1.143V,以10C放电,300次循环后,电池容量衰减率较小.  相似文献   

9.
动力电池的技术水平是制约整个电动车行业发展的"瓶颈",而贮氢合金的高倍率放电性能是影响N i/MH动力电池性能的主要因素,因此高功率贮氢合金是目前研制的热点。研究了Mn,Zr,La含量对AB5.2型含Zr高功率贮氢合金电化学性能的影响。结果表明,合金中Zr含量不应高于0.01%(原子分数,下同),La/Mm(La在混合稀土Mm中的质量分数,下同)不应超过70%,Mn含量视La/Mm的情况,可为0.4%~0.6%。对该合金的组成进行了优化设计,研制出了高倍率放电性能优良的贮氢合金,其组成为MmN i3.89Co0.4Mn0.6A l0.3Zr0.01。  相似文献   

10.
采用熔体快淬法制备了(Mg72.2Cu27.8)90Nd10的非晶贮氢合金带,用DSC差热分析仪测定了非晶合金带的热稳定性和非晶形成能力,采用透射电镜TEM和X射线衍射仪表征了不同结晶程度的贮氢合金带的微观组织结构.结果表明:非晶(Mg72.2Cu27.8)90Nd10贮氢合金的晶化过程分为3个步骤:首先在170℃生成平均晶粒尺寸为5~10nm Mg2Cu相;当回火处理温度升高至210℃时,非晶(Mg72.2Cu27.8)90Nd10贮氢合金发生了第二步晶化反应,生成了α-Mg相;当回火处理温度升高到335℃以后,非晶贮氢合金已经完全晶化,生成了稳定的Mg2Cu,α-Mg和Cu5Nd相,晶化后的颗粒尺寸有50~80nm.对不同组织结构的(Mg72.2Cu27.8)90Nd10合金的贮氢性能测试表明:完全非晶状态的(Mg72.2Cu27.8)90Nd10合金具有最快的吸氢速率和最高的贮氢量(3.2%(质量分数)).  相似文献   

11.
MgNi2添加对AB5型储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
制得了含Mg的AB5型稀土合金, 研究了合金添加Mg后合金电化学性能的变化. 采用ICP, XRD对合金组成和结构进行分析, 并通过EIS、CV、SEM和阳极极化曲线研究了电化学反应机理.  相似文献   

12.
MmB5贮氢合金的结构和性能   总被引:4,自引:0,他引:4  
近十年未对AB5型合金的研究表明,某些多元取代的LaNi5基合金可作为MH/Ni电池的负极材料,且具有容量大,寿命长等优点[1,2].LaNi5虽然具有吸放氢量较大、平台氢压平整和压力滞后小等优良性能,但不耐硷腐蚀、吸氢后易粉化,其氢化物的分解氢压较高,故不能作为负板材料.以Co部分地取代Ni可有效地降低氢化物的分解氢压·混合稀土(Mm)取代La,虽容量有所下降,但从原料成本上看是有益的.本工作试图从MmB5多元合金晶体结构的研究,来探讨Mm中La和Ce的相对含量对吸放氢性能和电化学容量的影响.1实验Mllin。合金样品由金属Ni,…  相似文献   

13.
为了获得既具有较高电化学容量又具有良好循环稳定性的低钴AB5型贮氢合金,研究了Fe部分替代Cu对低钴AB5型贮氢合金相结构和电化学性能的影响.采用真空感应熔炼方法,制备了一系列含Cu和Fe的低钴AB5型贮氢合金LaNi3.55Mn0.35Co0.20Al0.20Cu0.85-xFex(x=0.10,0.20,0.25,0.40,0.60).粉末X射线衍射(XRD)分析表明,合金含有单一CaCu5型六方结构的LaNi5相,Fe部分替代Cu并没有改变合金的本体相结构,但随着Fe含量的增大,晶格参数a,c和晶胞体积V增大.电化学性能测试表明,随着x增加,合金的放电容量和高倍率放电能力降低,但是循环稳定性得到了显著提高.当x从0.10增加到0.60时,合金的200周循环稳定性(S200)从77.6%提高到89.9%.Fe替代Cu有利于提高合金的循环稳定性,这主要是随着Fe替代量增大,晶胞体积增大,晶格体积膨胀率明显减小,合金的抗粉化能力增强.  相似文献   

14.
采用单辊快甩凝固技术制备了过化学计量比稀土系贮氢合金La(NiMn)5.6-xFex (x=0~0.5),研究了Fe及快淬速度对合金电极性能及微观结构的影响. 结果表明,过化学计量比快淬合金的相结构均为过饱和CaCu5单相,且随Fe的增多,合金晶胞体积基本呈线性增加,放电平台压力值递减,合金电极的放电容量增大且电极循环稳定性得到有效提高;当x≥0.4时,合金最大放电容量为341 mAh·g-1,经200次循环后电极容量保持率大于96.2%,1C和2C放电时的HRD分别为88%~89.8%和62%~70%. 不同淬速条件下合金凝固组织形貌和晶态存在明显差别,淬速对合金的电极性能有明显影响;当x=0.3,淬速为10 m·s-1时,合金电极有良好的综合电化学性能.  相似文献   

15.
研究了富镧混合稀土贮氢合金MlNi5 及加Sn 后对合金的结构、活化性能、吸氢容量和平衡氢压等性能的影响。通过X 射线衍射分析进行物相分析, 测试了298 ,313,333 K 温度下合金的吸、放氢PCT曲线。结果表明,MlNi5 - xSnx 合金(x=0 ~0.4) 为六方晶体结构的单相组织。以Sn 部分取代Ni 改善了MlNi5 的活化特性, 并使平台压力降低, 吸、放氢滞后减小。随着Sn 含量增加, 晶胞体积增大, 平衡氢压降低, 生成热减小, 氢化物稳定性提高。而少量的Sn 对吸氢能力降低较小, 是理想的替代元素。  相似文献   

16.
17.
在3.0 MPa氢气气氛下机械合金化Mg-60%LaNi5制备出镁基复合储氢材料.XRD分析表明氢气氛下球磨60h后的物相为Mg2NiH4,β-MgH2和LaH3.SEM及EDS分析表明该复合材料成分分布均匀.对材料的吸氢动力学特性研究表明:该复合材料具有较高的活性,室温5.0MPa氢气压力下15min内的吸氢量为2.37%;在5.0 MPa氢气压力和373~473 K的条件下,可以在1min之内完成饱和吸氢量的80%以上;在5.0 MPa氢气压力和523~553 K之间的条件下,可以在1min之内完成饱和吸氢量的90%以上;在553 K的最大吸氢量为4.23%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号