首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
一种新的凝析气藏气液相变实验方法研究   总被引:2,自引:1,他引:1  
凝析油气体系和储层岩石是一个相互作用的系统,必然对孔隙介质中凝析气的相态特征产生影响。本文利用气 相色谱分析技术,建立了一种新的凝析气藏气液相变实验方法。实验研究表明:低渗透凝析气藏中孔隙介质对凝析气相态 有较大影响。因此,考虑孔隙介质对凝析气相态的影响对于高效经济开发低渗透凝析气藏具有指导意义。  相似文献   

2.
陈继良  罗良  蒋方明 《计算物理》2013,30(6):862-870
采用自行开发的增强型地热系统(EGS)地下热流动过程三维动态模拟软件,模拟不同地质条件下EGS的长期运行过程,分析热储周围岩体的热补偿对产热温度以及热储内岩石、流体温度演化的影响.该数值模型视热储为等效多孔介质,采用两个能量方程分别描述流体和岩石的温度场,深入探究岩石与循环流体之间的换热过程.研究发现,热储周围岩体的热补偿作用与热储内流场形态强烈相关,且并不总是提高EGS的生产温度.在深度方向上有较大的优势流动的热储中,热补偿作用在EGS运行早期甚至会降低采出流体的温度.随着EGS的运行,热储温度持续降低,热补偿将对热能开采的影响将逐渐转向正面,对生产流体温度的提高效果增强.  相似文献   

3.
The paper is devoted to simulation of the initial stage of natural gas hydrate underground storage: gas injection into aquifer just below permafrost rocks. It is based on the mathematical model of multiphase non-isothermal real gas and water flow in porous media. The model takes into account the transformation of gas and water into hydrate at certain temperature, which depends on gas flow pressure. The dynamics of hydrate and water saturation as well as the pressure and temperature fields in a reservoir with given porosity, permeability, and initial values of pressure, temperature and water saturation were studied. An implicit finite-difference scheme is used to approximate the original boundary-value problem. The finite-difference equations are solved using simple iteration and sweeping algorithms. Several examples of calculations corresponding to real cases are given. Calculations have revealed that the final result strongly depends on the combination of porosity and permeability of a reservoir.  相似文献   

4.
Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.  相似文献   

5.
Doklady Physics - The residual flow effect of a geothermal loop is the flow of fluid from a geothermal reservoir through production well, heat exchanger, and injection well after switching off the...  相似文献   

6.
王婷  崔志文  刘金霞  王克协 《物理学报》2018,67(11):114301-114301
考虑孔隙流体中含有少量气泡,且气泡在声波作用下线性振动,研究声波在这种孔隙介质中的传播特性.本文先由流体质量守恒方程和孔隙度微分与流体压力微分的关系推导出了含有气泡形式的渗流连续性方程;在处理渗流连续性方程中的气体体积分数时间导数时,应用Commander气泡线性振动理论导出气体体积分数时间导数与流体压强时间导数的关系,进而得到了修正的Biot形式的渗流连续性方程;最后结合Biot动力学方程求得了含气泡形式的位移场方程,便可得到两类纵波及一类横波的声学特性.通过对快、慢纵波的频散、衰减及两类波引起的流体位移与固体位移关系的考察,发现少量气泡的存在对快纵波和慢纵波的传播特性影响较大.  相似文献   

7.
Depressurization combined with brine injection is a potential method for field production of natural gas hydrate, which can significantly improve production efficiency and avoid secondary formation of hydrate. In this work, the experiments of hydrate production using depressurization combined with brine injection from a simulated excess-water hydrate reservoir were performed, and the effects of NaCl concentration on hydrate decomposition, temperature change, and heat transfer in the reservoir were investigated. The experimental results indicate that there is little gas production during depressurization in a excess-water hydrate reservoir, and the gas dissociated from hydrate is trapped in pores of sediments. The high-water production reduces the final gas recovery, which is lower than 70% in the experiments. The increasing NaCl concentration only effectively promotes gas production rate in the early stage. The final cumulative gas production and average gas production rate have little difference in different experiments. The NaCl concentration of the produced water is significantly higher than that which is in contact with hydrate in the sediments because the water produced by hydrate decomposition exists on the surface of undissociated hydrate. The high concentration of NaCl in the produced water from the reactor significantly reduces the promoting effect and efficiency of NaCl solution on hydrate decomposition. The injection of NaCl solution decreases the lowest temperature in sediments during hydrate production, and increases the sensible heat and heat transfer from environment for hydrate decomposition. The changes of temperature and resistance effectively reflect the distribution of the injected NaCl solution in the hydrate reservoir.  相似文献   

8.
The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer(ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.  相似文献   

9.
Mathematical and numerical modeling of fluid flows in the domains with free boundaries under co-current gas flow is widely investigated nowadays. A stationary problem of fluid motion in a rectangular cavity with a non-deformed free boundary is studied in a two-dimensional statement. The tangential stresses created on the free boundary by an adjoint gas flow are considered to be a driving force for a fluid motion. The influence of the cavity geometry (cavity aspect ratio) and of the free boundary (length of the open part of the boundary) on the velocity field is investigated numerically. The simulations are carried out for different values of the gas Reynolds numbers. The characteristic values for the flow parameters as well as geometrical characteristics described in this paper are motivated by the main features of the CIMEX-1 experiments prepared for the International Space Station. The paper presents examples of the fluid flow structure in the open cavities and conclusions.  相似文献   

10.
The primary objective of this study was to investigate the energy recovery performance of the permafrost hydrate deposit in the Qilian Mountain at site DK-2 using depressurization combined with thermal injection by the approach of numerical simulation. A novel multi-well system with five horizontal wells was applied for large-scale hydrate mining. The external heat is provided by means of water injection, wellbore heating, or the combinations of them through the central horizontal well, while the fluids are extracted outside from the other four production wells under constant depressurization conditions. The injected water can carry the heat into the hydrate deposit with a faster rate by thermal convection regime, while it also raises the local pressure obviously, which results in a strong prohibition effect on hydrate decomposition in the region close to the central well. The water production rate is always controllable when using the multi-well system. No gas seepage is observed in the reservoir due to the resistance of the undissociated hydrate. Compared with hot water injection, the electric heating combined with normal temperature water flooding basically shows the same promotion effect on gas recovery. Although the hydrate regeneration is more severe in the case of pure electric heating, the external heat can be more efficiently assimilated by gas hydrate, and the efficiency of gas production is best compared with the cases involving water injection. Thus, pure wellbore heating without water injection would be more suitable for hydrate development in deposits characterized by low-permeability conditions.  相似文献   

11.
冯文光 《计算物理》1987,4(4):489-502
本文建立了单一介质、双重介质中由两个渗透层被一个致密低渗透层隔开的多层油藏渗流的数学模型,并求得了无穷大地层的精确解和长时渐近解。利用这个解可以在双重介质层状油藏的单井、多井试井中解释压力恢复曲线、垂向干扰试井和垂向脉冲试井。  相似文献   

12.
李乐  李克非 《物理学报》2015,64(13):136402-136402
采用逾渗理论对含随机裂纹网络的孔隙材料渗透性进行研究. 开裂孔隙材料渗透率的影响因素包括裂纹网络的几何特征、孔隙材料本体渗透率以及裂纹开度, 本文使用连续区逾渗理论模型建立了渗透率的标度律. 对于裂纹网络的几何特征, 本文基于连续区逾渗理论并考虑裂纹网络的分形特征提出了有限区域内二维随机裂纹网络的连通度定义; 对随机裂纹网络的几何分析表明, 随机裂纹局部团簇效应会降低裂纹网络的整体连通性, 随机裂纹网络的标度指数并非经典逾渗理论给出的固定值, 而是随着网络的分形维数的减小而增大. 本文在网络连通度和主裂纹团的曲折度的基础上, 提出了开裂孔隙材料渗透率标度律的解析表达, K=K0(Km,b)(ρ-ρc)μ, 分别考虑了裂纹网络的几何逾渗特征 (ρ-ρc)μ、孔隙材料渗透率Km 以及裂纹开度比b; 对有限区域含有随机裂纹网络的孔隙材料渗透过程的有限元模拟表明, K0 在裂纹逾渗阈值附近与b呈指数关系, 但当裂纹的局部渗透率与Km比值高于106 后, 开度比b对渗透率不再有影响.  相似文献   

13.
A new numerical technique based on a lattice-Boltzmann method is presented for analyzing the fluid flow in stratigraphic porous media near the earth's surface. The results obtained for the relations between porosity, pressure, and velocity satisfy well the requirements of stratigraphic statistics and hence are helpful for a further study of the evolution of fluid flow in stratigraphic media.  相似文献   

14.
A well-known complication in the oil reservoir during oil production is asphaltene deposition in and around the production wellbore. Deposition of asphaltene around the production wellbore may cause a significant pressure drop and in turn loss of efficiency in the production process. Various mechanical and chemical methods have been employed in order to reduce asphaltene formation or to eliminate the precipitate. A novel technique which presented a great potential for prevention or elimination of asphaltene is spreading out the high energy ultrasound wave within the oil reservoir. In this study, in a glass micro-model, asphaltene precipitation was first simulated in a transparent porous medium and its removal by application of high energy ultrasound wave was then investigated. To simulate asphaltene precipitation, the micro-model was first saturated with oil and then a normal-pentane was injected. This was followed by flooding the porous media with brine while propagating ultrasound waves (30 kHz and 100 W) to eliminate asphaltene precipitation. The experiment setup was equipped with a temperature controller. The results indicate a significant reduction in asphaltene precipitation in the oil reservoir may be achieved by application of ultrasound energy. Asphaltene particle deposition has been solved reversibly in the oil layer of porous medium and with the oil layering mechanism, the rate of oil production has been increased. In some spots, water/oil emulsion has been formed because of the ultrasonic vibration on the wall. Both the crude and synthetic oils were examined.  相似文献   

15.
The improved numerical models based on the algebraic representations of the Reynolds stresses and fluxes and the use of the differential equation for the transfer of the dispersion of fluctuations of the vertical velocity component are considered for describing the processes of a vertical turbulent exchange in a stably stratified reservoir. Numerical modelling of the penetration of a turbulent layer of a mixed fluid in a linearly stratified medium under the action of constant shear stress is carried out. Computational results agree well with known experimental data and point to a substantial influence of the anisotropy of the flow on its main characteristics.  相似文献   

16.
The concept of hydraulic permeability is at the core of modeling single phase or multi-phase flow in heterogeneous porous media, as it is the spatial distribution of the permeability that primarily governs the behavior of fluid flow in the medium. To date, the modeling of fluid flow in porous media has been hampered by poor estimates of local permeability. Magnetic Resonance Imaging is well known for its ability to measure non-invasively the local density and flow rate of different fluids saturating porous media [1,2]. In this paper we demonstrate the first non-invasive method for the direct measurement of a single projection of the local permeability tensor of a porous medium using gas-phase MRI. The potential for three-dimensional imaging of the medium permeability is also discussed. The limitations of the method are listed and results are presented in a model porous medium as well as in a real oil reservoir rock.  相似文献   

17.
18.
This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars.  相似文献   

19.
This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-mum average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time T(E)=40 ms, and 6-10% in consolidated porous media for T(E)=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm(3) and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed.  相似文献   

20.
In this work we interpret the data showing unusually strong velocity dispersion of P-waves (up to 30%) and attenuation in a relatively narrow frequency range. The cross-hole and VSP data were measured in a reservoir, which is in the porous zone of the Silurian Kankakee Limestone Formation formed by vertical fractures within a porous matrix saturated by oil, and gas patches. Such a medium exhibits significant attenuation due to wave-induced fluid flow across the interfaces between different types of inclusions (fractures, fluid patches) and background. Other models of intrinsic attenuation (in particular squirt flow models) cannot explain the amount of observed dispersion when using realistic rock properties. In order to interpret data in a satisfactory way we develop a superposition model for fractured porous rocks accounting also for the patchy saturation effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号