首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation presents detailed experimental measurements of an active tip-clearance control method based on tip injection in a high-turning axial turbine cascade. Besides that, numerical investigations are also conducted to study phenomena which are not easily measured in the experiments. It aims to study the influence of tip injection on tip clearance flow, with emphasis on the effects of injection locations. Detailed flow field measurements were made downstream of the cascade using a three-hole probe. Static pressure distributions were also measured on the blade surface at 50% and 97.5% span, respectively. The results suggest that tip injection can weaken tip clearance flow, reducing the tip clearance mass flow and its associated losses. Meanwhile, the heat transfer condition on the blade tip surface can be also improved significantly. It also can be found that injection chordwise location plays an important role in the redistribution of secondary flow within the cascade passage. When the same number of injection holes and injection mass flow are applied, holes located in the aft part of blade can perform much better than that in the front part.  相似文献   

2.
In turbomachines, secondary flows (or endwall flows) typically originate at the junction between endwalls and the blade surface. Within the blade passage, the strength of the secondary flows is amplified by the crossflow from the pressure to the suction surface of the blade. The enhanced mixing due to secondary flows induce additional losses into the system. This decreases the overall work output and also changes the flow incidence onto the downstream blade rows. Using a series of high-fidelity eddy resolving simulations, the current study attempts to provide an improved understanding for the complex flow physics over the endwalls of a high-lift Low Pressure Turbine (LPT) blade. The effect of three different inflow conditions has been studied. These include a laminar boundary layer (LBL), a turbulent boundary layer (TBL) and wakes with secondary flow (W&S) from an upstream blade row. For the simulations with TBL and W&S, precursor eddy resolving simulations were used to prescribe realistic inflows. The loss generation mechanisms were subsequently studied both at the endwall and the midspan, which includes evaluating the mass-averaged total pressure loss coefficient (Yp) and the loss generation rate.When compared to LBL, additional disturbances from an incoming TBL and wakes with secondary flows enhanced the mixing within the blade passage resulting in a substantial increase in the total pressure loss. Prior to flow transition, incoming wakes with secondary flows increased the local loss generation rate at both the endwall and the midspan in the front portion of the blade passage (x/Cx < 0.84). In contrast, in the aft portion of the passage (x/Cx > 0.8), the incoming wakes effectively suppressed the separation bubble at the midspan thereby decreasing the local loss generation rate. It is also demonstrated that the wakes shed from the trailing edge at the mid-span mix out rapidly when compared to the passage vortex at the endwall.  相似文献   

3.
 The results from an experimental investigation of unsteady boundary layer behavior on a linear turbine cascade are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, two different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity. turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results display the transition and development of the boundary layer, ensemble-averaged velocity, and turbulence intensity. Received: 23 September 1996/Accepted: 19 February 1997  相似文献   

4.
 Digital evaluated differential interferometry using adjustable spatial carrier fringes was applied to flow measurements in a transonic turbine blade cascade. The interferograms were evaluated using a two-dimensional Fourier Analysis. This evaluation provided density gradient maps of the flow field in a digital form. A specially designed interferometer was used allowing adjustment of sensitivity and superposition of carrier-fringe system separately. This type of interferometer is also highly insensitive to vibration noise. For a turbine blade cooling film a comparison of this type of differential interferometry with holographic interferometry and a Schlieren visualisation is also given. As a result differential interferometry using adjustable spatial carrier fringes and digital fringe analysis gave density-gradient maps similar to Schlieren recordings but of quantitative nature, thus enabling compensation of wave front distortions. Integration of these density gradient maps resulted in density maps which were then compared to recordings done with pulsed holographic interferometry. Received: 27 December 1996/Accepted: 30 April 1997  相似文献   

5.
This paper presents detailed turbulence measurements in a two-dimensional, transonic, double passage turbine cascade. Particle image velocimetry was used to obtain mean velocity and turbulence measurements all around a single turbine blade within about 2 mm of the blade and wall surfaces. The passage walls were designed using an optimization procedure so that the blade surface pressure distribution matches that of the blade in an infinite cascade. The resulting experimental model captures much of the complexity of a real turbine stage (including high streamline curvature, strong accelerations, and shocks) in a passage with a continuous wall shape, allowing for high measurement resolution and well controlled boundary conditions for comparison to CFD. The measurements show that in the inviscid regions of the passage the absolute level of the turbulent fluctuations does not change significantly as the flow accelerates, while the local turbulence intensity drops rapidly as the flow accelerates. These results provide a benchmark data set that can be used to improve turbulence models.  相似文献   

6.
The mechanical design of hydraulic turbines is conditioned by the dynamic response of the runner that is usually estimated by a computational model. Nevertheless, the runner has complex boundary conditions that are difficult to include in the computational model. One of these boundary conditions is the water in which the runner is submerged. The effect of the added mass and damping of water can modify considerably the natural frequencies of the runner. An experimental investigation in a reduced scale model of a turbine runner, using modal analysis, was carried out. Several impact tests with the runner freely suspended in air and in water were done. The response was measured with accelerometers located in different positions of the runner. From the modal analysis, the natural frequencies, damping ratios, and mode-shapes were determined. The same mode-shapes obtained in air were obtained in water but with lower natural frequencies and higher damping ratios in water. The difference in the natural frequencies is shown to be dependant basically on the added mass effect of the water and not on its added damping. This difference also depends on the geometry of the mode, presenting different values for different mode-shapes. Using nondimensional values, the reduction in the natural frequencies can be extrapolated to other Francis runners presenting similar geometrical characteristics.  相似文献   

7.
8.
This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ~100 m/s can be observed between the ‘fast’ and ‘slow’ sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the ‘fast’ side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.  相似文献   

9.
Memory effects in turbulent plane wakes have been investigated for various wake generators (circular, triangular and square cylinders and a screen of 50% solidity) using orthogonal arrays of X-wires, eight in the (x,y) plane and eight in the (x, z) plane. In the far-wake region, discernible differences are observed for different generators, in the measured Reynolds stresses, spectra of v and approximations to the rms spanwise and lateral vorticities. These differences, which reflect variations in various aspects of the organised large-scale structures, are quantified through the contributions these structures make to the Reynolds stresses. The difference between the screen and the solid body wakes is especially pronounced.The support of the Australian Research Council is gratefully acknowledged  相似文献   

10.
Experiments were performed on laminar, vertical, annular, liquid curtains to study the dynamics of steady curtains, and the onset and frequency of oscillating curtains. The experiments were conducted to observe the effects of inertia and pressure on liquid curtains with different surface tensions. For steady curtains, convergence lengths were measured as functions of Froude number and pressure differential for three different surface tensions. The factors causing the onset of oscillations in a pressurized curtain were observed and the frequency of the internal pressure fluctuations were measured for various Froude numbers and two surface tensions.List of symbols b local thickness of curtain sheet - b 0 initial thickness of curtain or nozzle gap thickness (0.5 mm) - C P pressure coefficient - Fr Froude number (V 0 2 /g R 0) - g gravitational acceleration - g gravitational acceleration - L convergence length of curtain - L * dimensionless convergence length (L/R 0) - N c convergence number (g 2 R 0 2 b 0 /2v 0 2 ) - P e pressure outside the curtain (ambient) - P i pressure inside the curtain - P pressure differential (P iP e) - P cr pressure differential at which curtain begins to oscillate - R local radius of curvature in the horizontal plane - R 0 initial curtain radius or radius of nozzle exit (50 mm) - r v local radius of curvature in the vertical plane - V local liquid velocity - V 0 initial liquid velocity - V * dimensionless local liquid velocity (V/V 0) - z axial distance from the nozzle - z * dimensionless axial distance from the nozzel (z/R 0) - s differential length of curtain - differential angle in the horizontal plane - angle between the direction of the surface tension force in the vertical plane and the direction of r v - deangle between the direction of the surface tension force in the horizontal plane and the direction of R - angle between r vand R in the vertical plane - 0 nozzle exit angle (zero degrees) - surface tension of liquid - liquid density (1.0 gm/cm3)  相似文献   

11.
The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, \(H\), and width, \(D\), such that the aspect ratio, AR = H/D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D  = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, \(h\), such that \(Re_h=500\). Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of \(13D\) downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.  相似文献   

12.
The results of a numerical analysis of stationary spontaneously condensing steam flows in a plane turbine cascade are presented and compared with the experimental and calculated results of other authors. The effect of the flow parameters on the position and strength of the condensation shocks is analyzed. The local and integral characteristics of superheated and wet steam flows are compared.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 144–153, November–December, 1995.  相似文献   

13.
Extensive velocity measurements have been taken in a linear turbine cascade with unsteady oncoming wakes. The unsteady wakes were generated by moving cylinders on a squirrel cage device. The Reynolds number was 1.1 × 105, and the Strouhal number varied from o to 7.36. The blade-to-blade flow and the boundary layers on the suction side were measured with a hot-wire anemometer. The results were obtained in ensemble-averaged form so that periodic unsteady processes can be studied. Of particular interest was the transition of the boundary layer. The boundary layer remained laminar in the case without wakes. The passing wakes caused transition, and the beginning of transition moves forward as the wake-passing frequency increases. Unlike in the flat plate study of Liu and Rodi (1991a) the boundary layer state hardly changed with time, although the turbulence level in the boundary layer showed clear periodic response to the passing wakes. The work reported here was sponsored by the German Federal Ministry of Research and Technology through program TURBOTHERM under contract no. 0326501D. The authors should like to thank Mr. D. Bierwirth for his excellent technician work on this project, Dr. N. H. Cho for his help with the preparation of the plots and Mrs. R. Zschernitz for her expert typing of the text.  相似文献   

14.
Tip leakage aerodynamics over stepped squealer tips in a turbine cascade   总被引:3,自引:0,他引:3  
Tip gap flow physics and aerodynamic loss generations for two stepped squealer tips of a “Higher Pressure-side rim and Lower Suction-side rim” (HPLS) tip and a “Lower Pressure-side rim and Higher Suction-side rim” (LPHS) tip have been investigated in a turbine cascade. For a fixed tip gap height-to-chord ratio of h/c = 2.0%, oil film flow visualizations are performed on the casing wall as well as on the cavity floor, and three-dimensional flow fields downstream of the cascade are measured with a five-hole probe. For the HPLS tip, the leakage inflow over the pressure-side rim cannot reach the suction-side rim in the upstream region due to the presence of an inlet flow intrusion, and there exists a strong near-wall flow heading toward the trailing edge all over the cavity floor. On the other hand, the LPHS tip has a mid-chord leakage flow penetration into the blade flow passage, and also provides a downstream leakage flow penetration deeper than that for the HPLS tip. Its cavity floor can be divided into a backward flow region and a wide separation bubble. Aerodynamic loss for the HPLS tip, which is nearly identical to that for the cavity squealer tip, is lower than those for the LPHS and plane tips in a considerable degree.  相似文献   

15.
The cavitating flow in a cascade of three hydrofoils was investigated by experimental means and numerical simulation. Experiments on the 2D-hydrofoils cascade were carried out at Darmstadt University of Technology in a rectangular test section of a cavitation tunnel. A numerical model developed at LEGI (Grenoble) to describe the unsteady behaviour of cavitation, including the shedding of vapour structures, was applied to the hydrofoils cascade geometry. Results of both experimental and numerical studies show a strong interaction between the cavities of each flow channel besides the typical self-oscillation of cloud cavitation. A detailed comparison of the results allows an interpretation of the interaction mechanisms to be proposed.  相似文献   

16.
The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.  相似文献   

17.
Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field–flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.  相似文献   

18.
The wake vortical structures of a square cylinder at different yaw angles to the incoming flow (α=0°, 15°, 30° and 45°) are studied using a one-dimensional (1D) hot-wire vorticity probe at a Reynolds number (Re) of about 3600. The results are compared with those obtained in a yawed circular cylinder wake. The Strouhal number (StN) as well as the mean drag coefficient (CDN), normalized by the velocity component normal to the cylinder axis, follow the independent principle (IP) satisfactorily up to α=40°. Using the phase-averaging analysis, both the coherent and the remaining contributions of velocity and vorticity are quantified. The flow patterns of the coherent spanwise vorticity (ωz) display obvious Kármán vortex streets and their maximum concentrations decrease as α increases. Similar phenomena are also shown in the coherent contours of the streamwise (u) and transverse (v) velocities as well as the Reynolds shear stress (uv). The contours of the spanwise velocity (w) and Reynolds shear stress (uw), however, experience an increasing trend for the maximum concentrations with increasing yaw angle. These results indicate an enhancement of the three-dimensionality of the wake and the reduction of vortex shedding strength as α increases. While general similarities to the wake behind a yawed circular cylinder are found in terms of flow features, some differences between the two wakes at different yaw angles are highlighted.  相似文献   

19.
Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed features of the wake flow are calculated and discussed. Then, in harmonic oscillatory oncoming flow two different wake flow patterns withK c=2,4 and 10 are obtained respectively. Our results present a new wake flow pattern for lowKc numbers (Kc<5) describing vortex shedding, pairing and moving in a period of the oscillatory flow starting from rest. The calculated drag and inertia force coefficients are closer to experimental data from the U-tube than the previous results of vortex simulation. For in-line combined oncoming flow the vortex lock-in and dynamic characteristics are simulated. The results are shown to be in good agreement with experiments. The project supported by National Natural Science Fundation of China and LNM of Institute of Mechanics. CAS  相似文献   

20.
《力学快报》2021,11(5):100292
The vorticity dynamics and its relationship to dissipation in the wake of a utility-scale wind turbine are investigated through large-eddy simulation. The vorticity dynamics is assessed through the enstrophy, which is related to the turbulent dissipation. The averaged enstrophy and turbulent dissipation are shown to be quantitatively similar in the wake. Using temporal phase averaging, the vorticity fluctuations are decomposed into coherent and random fluctuations with respect to the frequency of the tip vortices. The enstrophy in the tip vortices is dominated by coherent fluctuations, while the coherent fluctuations of root vortices are immediately saturated by the random vorticity fluctuations of the unstable hub vortex. The coherent strain rate has significant differences compared to the coherent enstrophy within one diameter downwind of blade tip, but the random enstrophy and strain rate are relatively similar. Differences in coherent enstrophy and strain rate decrease further from the rotor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号