首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new colour inorganic pigments. Chemical compounds of the Bi2-xYx/2Zr3x/8O3 type were synthetised. The host lattice of these pigments is Bi2O3 that is doped by Y3+ and Zr4+ ions. The incorporation of doped ions provides interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. This paper also contains the results of the pigment characterization by X-ray powder diffraction and their colour properties.  相似文献   

2.
The synthesis of new pigments based on Bi2O3 is investigated because they give interesting orange hues and can substitute the pigments problematic from the environmental point of view. Chemical compounds of the Bi2–xZr3x/4O3 type were synthesized. The host lattice of these pigments is Bi2O3 that is doped by Zr4+ ions. The area of ZrO2 solubility in Bi2O3 at 800°C forming solid solution of both oxides was studied. The incorporation of doped ions provides interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments.  相似文献   

3.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new environmentally friendly inorganic pigments. Chemical compounds of the (Bi2O3)1–x(Er2O3)x type were synthetized. The host lattice of these pigments is Bi2O3 that is doped by Er3+ ions. The incorporation of doped ions provides interesting colours and contributes to an increase in the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments.  相似文献   

4.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new ecological inorganic pigments. Chemical compounds of the (Bi2O3)1−x(Y2O3)x type were synthesized. The host lattice of these pigments is Bi2O3 that is doped by Y3+ ions. The incorporation of doped ions provides the interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. This paper also contains the results of the pigment characterization by X-ray powder diffraction and their colour properties.  相似文献   

5.
New environmentally inorganic pigments based on Bi2O3 doped by metal ions, such as Zr4+ and Dy3+ have been developed and characterized using the methods thermal analysis, X-ray powder diffraction, and spectral reflectance data. The compounds having formula Bi2−x Dy x/2Zr3x/8O3 (x = 0.2, 0.6, 1.0, and 1.2) were prepared by the solid state reaction. Methods of thermal analysis were used for determination of the temperature region of the pigment formation and thermal stability of compounds. The incorporation of doped ions in Bi2O3 changes the color from yellow to orange and also contributes to a growth of their thermal stability. This property gives a direction for coloring ceramic glazes.  相似文献   

6.
A series of novel environmentally inorganic pigments based on Bi2O3 doped by metal ion Dy3+ has been developed and characterized using methods of thermal analysis, X-ray powder diffraction and by reflectance spectral data. The new pigments have been synthesized from mixtures containing Bi2O3 and Dy2O3 by traditional solid-state route. The incorporation of Dy3+ into crystal lattice Bi2O3 changes the colour from yellow-orange to orange. The band gap of phases with formula Bi2?xDyxO3, where x = 0.8, increases from 2.30 to 2.38 eV with growth of calcination temperature. The pigment Bi1.2Dy0.8O3 was also evaluated from the standpoint of influence of milling time on the colour properties and particle size. The simultaneous TG–DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. The results confirm the positive effect of lanthanide ions into Bi2O3 on thermal stability of prepared phases.  相似文献   

7.
A series of novel environmentally inorganic pigments based on Bi2O3 doped by rare-earth elements RE (Er, Ho, La, Nd, Dy, Lu and Y) have been developed and characterized using methods of thermal analysis, X-ray powder diffraction and by reflectance spectral data. The new pigments have been synthesized from mixtures containing Bi2O3 and RE2O3 by traditional solid-state route. The incorporation of RE3+ into crystal lattice Bi2O3 changes the colour from yellow, yellow-orange to orange. The simultaneous TG?CDTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. The results confirm the positive effect of rare-earth ions doped into Bi2O3 that contribute to a growth of thermal stability of prepared pigments.  相似文献   

8.
The synthesis of new compounds based on the Bi2O3–Ho2O3 system, which can be used as new ecological inorganic pigments, is investigated in our laboratory. The optimum conditions for the syntheses of these compounds have been followed by the methods of thermal analysis that can provide first information about the temperature region of the pigment formation. The synthesis of these compounds was followed by thermal analysis using STA 449/C Jupiter (Netzsch, Germany).  相似文献   

9.
New inorganic compounds having the general formula (Bi2O3)1−x (Lu2O3) x (x ranges from 0.1 to 0.5) displaying orange colours have been synthesized by traditional solid-state route, as viable alternatives to lead, cadmium and chromium based yellow toxic inorganic pigments. The host lattice of these pigments is Bi2O3 that is doped by Lu3+ ions. The goal was to develop conditions for the synthesis of these compounds and to determine the influence of calcination temperature and lutetium content on their colouring effects. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. The pigments were also evaluated from the standpoint of their structure and particle sizes.  相似文献   

10.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+‐Er3+ codoped Cs2AgInCl6 shows Er3+ f‐electron emission at 1540 nm (suitable for low‐loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+‐Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+‐Yb3+ codoped sample emitting at 994 nm. A combination of temperature‐dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

11.
The influence of conditions of the preliminary thermal treatment of ZrO2, ammonia and methanol adsorption, and MoO3 supporting on O2 formation during the adsorption of an NO + O2 mixture was studied. The interaction of O2 with different molecules was studied. Adsorbed ammonia and methanol, as well as supported Mo6+ ions, were shown to inhibit this reaction. The involvement of the Zr4+ and O2– Lewis sites in the reaction was concluded. The interaction of ammonia and methanol with the O2 radical anions changed the g tensor parameters and decreased the thermal stability of O2 in the case of methanol. O2 radical anions were formed on the reduced (0.1–2.0)% MoO3/ZrO2 samples during the interaction of O2 with the Mo5+ ions in the octahedral configuration. As in the case of O2 formation during NO + O2 adsorption on ZrO2, the radical anions were localized in the coordination spheres of the coordinately unsaturated Zr4+ ions. A change in the MoO3 content of the samples from 0.1 to 0.5% led to an increase in the amount of O2 , whereas a change from 0.5 to 2.0% led to a decrease in the O2 amount due to the screening of the Zr4+ ions by oxo complexes and polymolybdates.  相似文献   

12.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+-Er3+ codoped Cs2AgInCl6 shows Er3+ f-electron emission at 1540 nm (suitable for low-loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+-Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+-Yb3+ codoped sample emitting at 994 nm. A combination of temperature-dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

13.
The synthesis of new compounds based on CeO2-PrO2-La2O3, which can be used as pigments for colouring of ceramic glazes, is investigated in our laboratory. The optimum conditions for the syntheses of these compounds have been estimated. The first information about the temperature region of the formation of the pigments investigated is provided by thermal analysis. The synthesis of these compounds is followed by thermal analysis using STA 449/C Jupiter (Netzsch, Germany). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Er2O3-SiO2 xerogels doped with different Er/Si concentrations were annealed at 950°C for 120 h. The Er3+ doping level varied from 0 to 40000 Er/Si ppm. The effect of Er2O3 content on the sintering behavior of silica gels and on the luminescence properties was studied by Vis-NIR absorption, Raman and luminescence spectroscopies.  相似文献   

15.

Light brown inorganic pigments based on BiFeO3 doped by Sr2+ cations were prepared by a conventional solid-state reaction at high temperature. This study is focused on the synthesis of Bi1?x Sr x FeO3?δ powders in a range of substitution (x = 0–0.35; with step size 0.05). The main role of strontium is to overcome the defects that come to exist during the evaporation of Bi over material preparation. The substitution of trivalent bismuth ions by divalent strontium ions results in oxygen deficiency in the lattice, which was proved by both thermogravimetric analysis and elemental analysis. The substitution has a positive effect on the thermal stability of samples. The thermal stability of BiFeO3 is 1046 K, whereas the substitution of 20 mol% of Bi3+ by Sr2+ ions shifted it to 1403 K and powder with composition Bi0.65Sr0.35FeO3?δ has a thermal stability that is higher than 1434 K. An increasing range of substitution is connected with the change in the pigment color from reddish-brown to orange-brown and back to reddish-brown. The Bi0.85Sr0.15FeO3?δ pigment prepared by calcination at 1273 K offers the most interesting color properties (L* = 45.57; a* = 20.38; b* = 26.23).

  相似文献   

16.
Spindle-shaped α-FeOOH particles were synthesized using the chemical coprecipitation method in Fe(CO3)x(OH)2(?x) suspensions system by adding metallic ions. The spindle-shaped γ-Fe2O3 particles were obtained by dehydration of α-FeOOH, and subsequent reduction and oxidation. Its thermal stability was investigated by differential thermal analysis (DTA). It was found that the transition temperature of γ-Fe2O3→α-Fe2O3 of samples doped with metallic ions is higher than that of the pure γ-Fe2O3 and increasing with increase of the size of the metallic ions, and γ-Fe2O3 by doping with two or more different metallic ions together has even higher thermal stability. The origin of the improved thermal stability was discussed. Additionally, the magnetic properties of γ-Fe2O3 were measured.  相似文献   

17.
In this paper, x (=2, 5, 7 and 10mol%) Co2+-doped Fe2O3 (xCo:Fe2O3) nanoparticles with enhanced photocatalytic activity have been reported. xCo:Fe2O3 nanoparticles were successfully prepared by co-precipitation followed thermal decomposition method. The structural, optical and morphological properties of the prepared samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance (DR) UV–visible absorption spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained results revealed that Co2+ ions were well doped within the lattices of Fe2O3. Also, Co2+ ions suppress the formation of the most stable α- Fe2O3 and stabilize less stable γ-Fe2O3 at 450 °C. The photocatalytic activity of xCo:Fe2O3 was examined by using pararosaniline (PR) dye. It was found that photocatalytic degradation of PR depends on dopant concentration (Co2+ ions). Relatively, the highest photocatalytic activity was observed for 5%Co:Fe2O3 nanoparticles. The plausible photocatalytic degradation pathway of PR at xCo:Fe2O3 surface has also been proposed.  相似文献   

18.
Currently, with increasing demand for non-contact fluorescence intensity ratio-based optical thermometry, a novel phosphor with high-efficiency, dual-emitting centers, and differentiable temperature sensitivity is more and more urgent to develop. In this work, an efficient dual-emitting center optical thermometry with high sensitivity and multicolor tunable in Ca2Sb2O7:Bi3+, Eu3+ phosphor is firstly designed and successfully prepared. Under 330 nm excitation, the fabricated phosphor presents the featured and distinguishable emissions of Bi3+ and Eu3+ ions. The high efficiency energy transfer from Bi3+ to Eu3+ ions is proved and its corresponding mechanism belongs to dipole-dipole interaction. By modulating the ratio of Bi3+/Eu3+, the multicolor changes from blue to pink are realized. Based on the discriminative thermal quenching behavior between Bi3+ and Eu3+, the fluorescence intensity ratio of Eu3+ to Bi3+ in Ca2Sb2O7 samples illustrates excellent optical thermometry performance from 298 to 523 K. The maximum absolute sensitivity (Sa) and relative sensitivity (Sr) reach as high as 0.2773 K?1 at 523 K and 2.37% K?1 at 448 K, respectively. Notably, the discriminated surrounding temperature can be directly confirmed by observing the emitting color from purple to orange-red with the temperature increase from 298 to 523 K. Furthermore, the as-prepared phosphor materials also demonstrate outstanding repeatability and excellent reversibility. These results exhibit that the designed Ca2Sb2O7:Bi3+, Eu3+ phosphors have great promising applications in the field of non-contact optical temperature thermometry and thermochromic.  相似文献   

19.
High color purity red emission with single band successfully achieved in a new Er3+, Tm3+ co-doped Y2Ti2O7 system under 1550 nm excitation, value of red to green emission ratio of the samples is more than 103. Efficient up-conversion luminescence can be obtained while the 4I13/2 level of Er3+ pumped by 1500 nm directly based on the large absorption section and long luminescence lifetime, and red emission composition will greatly enhanced by co-doping with Tm3+ ions, color purity of red emission under 1550 nm excitation is much higher than that of 980 nm. The quenching concentration of Er3+ ions is up to 28 mol% in Y2Ti2O7 rely on the layer distribution of cations, which can further improve the red emission color purity.  相似文献   

20.
Synthesis of the green spinel pigment Co0.46Zn0.55(Ti0.064Cr0.91)2O4 by a novel two-step method of preparation have been investigated. Inorganic pigments are almost always prepared by a solid state reaction. It is classical ceramic method which used oxides, hydroxides or carbonates as precursors. The reaction is performed at temperature higher than 1300°C and an agent of mineralization is usually present. The presented novel method of preparation decreases the calcining temperature necessary for reaching of bright and clear hue of the pigments prepared. Main attention was focused on the influence of two types of titanium raw materials on the temperature region of the spinel structure formation and on the colour properties of the pigments. The mixture of precursors with TiO2 gives a one-phase system when calcining at 1100°C but the colour properties are more interesting at 1150°C. Thermal stability of this pigment is limited by temperature 1300°C. This temperature is connected with partial oxidation of Cr(III) to Cr(VI). Thermal analysis provided the first information about the temperature region of the pigment formation and determined the thermal stability of pigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号