首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

2.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

3.
The unimolecular dissociation reactions of doubly charged ions were reported,which resulted from a tandem mass spectrometer and a reversed geometry double focusing mass spectrometer by electron impact.Mass analyzed ion kinetic energy spectrometry(MIKES) was used to obtain the kinetic energy releases in charge separation reactions of doubly charged ions.The intercharge distances between the two charges at transition states can be calculated from the kinetic energy releases.Transition structures of unimolecular dissociation reactions were infered from MIKES and MS/MS.  相似文献   

4.
Gas-phase structures of mass-selected singly- and doubly charged angiotensin ions have been determined by means of infrared multiple photon dissociation (IRMPD) spectroscopy and ion mobility spectrometry. Simulation of IRMPD spectra at the DFT level provides the location of the proton on the Arg side-chain in the case of the singly charged species. Interpretation of the ion mobility data suggests that the structures of singly- and doubly charged species are rather similar except for an internal proton transfer.  相似文献   

5.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

6.
借助质量分析离子动能谱和串联质谱研究了由电子轰击产生的双电荷离子的单分子亚稳碎裂及碰撞诱导分解过程,讨论了两种实验方法导致的差别因素.此外,根据质量分析离子动能谱提供的双电荷离子电荷分离反应的动能释放值计算了两电荷中心间距的最小值,以判别按不同电荷分离方式碎裂的双电荷离子的过渡态结构.  相似文献   

7.
Gas phase fragmentation of hydrogen deficient peptide radical cations continues to be an active area of research. While collision induced dissociation (CID) of singly charged species is widely examined, dissociation channels of singly and multiply charged radical cations in infrared multiphoton dissociation (IRMPD) and electron induced dissociation (EID) have not been, so far, investigated. Here, we report on the gas phase dissociation of singly, doubly and triply charged hydrogen deficient peptide radicals, [M + nH](n+1)+· (n = 0, 1, 2), in MS3 IRMPD and EID and compare the observed fragmentation pathways to those obtained in MS3 CID. Backbone fragmentation in MS3 IRMPD and EID was highly dependent on the charge state of the radical precursor ions, whereas amino acid side chain cleavages were largely independent of the charge state selected for fragmentation. Cleavages at aromatic amino acids, either through side chain loss or backbone fragmentation, were significantly enhanced over other dissociation channels. For singly charged species, the MS3 IRMPD and EID spectra were mainly governed by radical-driven dissociation. Fragmentation of doubly and triply charged radical cations proceeded through both radical- and charge-driven processes, resulting in the formation of a wide range of backbone product ions including, a-, b-, c-, y-, x-, and z-type. While similarities existed between MS3 CID, IRMPD, and EID of the same species, several backbone product ions and side chain losses were unique for each activation method. Furthermore, dominant dissociation pathways in each spectrum were dependent on ion activation method, amino acid composition, and charge state selected for fragmentation.  相似文献   

8.
Under electron ionization (EI) conditions, porphyrins yield unusually high intensities of doubly charged molecular and fragment ions. These doubly charged ions offer unique opportunities for the structure elucidation of porphyrins by tandem mass spectrometry (MS/MS). First, they fragment to a greater extent than the corresponding singly charged ions under both EI/MS and EI/MS/MS conditions. Second, doubly and singly charged porphyrin ions often fragment via different pathways, and can therefore yield different structural information. This paper describes several ways in which analyses of doubly charged porphyrin ions with a triple quadrupole tandem mass spectrometer can be useful in structure elucidation of porphyrins. The effect of the metal atom on the fragmentation of metalloporphyrins in an EI source is demonstrated by correlating the extent of doubly charged fragment ion formation to a stability index. Doubly charged porphyrin ions are shown to yield predominantly doubly charged daughter ions upon collisionally activated dissociation (CAD), and are also shown to fragment to a greater extent than corresponding singly charged porphyrin ions. Advantages and disadvantages of doubly charged porphyrin ion MS/MS for structure elucidation are discussed.  相似文献   

9.
An approach is described to increase the degree of protonation of a polypeptide ion in the gas phase. Sequential charge inversion reactions involving the reactions of oppositely charged ions are used to yield a net increase in ion charge. The approach is illustrated here with the conversion of singly protonated bradykinin to doubly protonated bradykinin. The first step involves conversion of the singly protonated peptide to the singly deprotonated peptide via reactions with multiply charged anions derived from carboxylate-terminated dendrimers. Some of the singly deprotonated peptide was then converted to doubly protonated peptide via reactions with multiply charged cations derived from amino-terminated dendrimers. The overall approach is illustrative of a general strategy for increasing the absolute charge states of large ions in the gas phase.  相似文献   

10.
Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine’s degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.  相似文献   

11.
Multiple reaction monitoring (MRM) ratios as provided by tandem mass spectrometers are used to confirm positive residue findings (e.g. veterinary drugs or pesticides). The Commission Decision 2002/657/EEC defines tolerance levels for MRM ratios, which are intended to prevent the reporting of false positives. This paper reports findings where blank sample extracts have been spiked by a drug (difloxacin) and the corresponding measured MRM ratios significantly deviated from MRM ratios observed in matrix‐free solution. The observation was explained by the formation of two different [M+H]+ analyte ions within the electrospray ionization (ESI) interface. These two ions vary only by the site of analyte protonation. Since they are isobaric, they are equally transmitted through the first quadrupole, but are differently fragmented in the collision chamber. The existence of two isobaric ions was deduced by statistical data and the observation of a doubly charged analyte ion. It was hypothesized that the combined presence of [M+H]+ and [M+2H]2+ implies the existence of two different singly charged ion species differing only by the site of protonation. Low‐ and high‐energy interface‐induced fragmentation was performed on the samples. The surviving precursor ion population was mass selected and again fragmented in the collision chamber. Equal product ion spectra would be expected. However, very different product ion spectra were observed for the two interface regimes. This is consistent with the assumption that the two postulated isobaric precursor ions show different stability in the interface. Hence the abundance ratio among the two types of surviving precursor ions will shift and change the resulting product ion spectra. The existence of the postulated singly charged ions with multiple chargeable sites was finally confirmed by successful ion mobility separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
李智立  刘淑莹 《化学学报》1997,55(4):393-398
本文利用质量分析离子动能谱(MIKES)、碰撞诱导解离(CID)技术和电子捕获诱导解离(ECID)技术, 研究了邻、间、对苯二酚分子在电子轰击质谱(EIMS)中产生的双电荷离子[C6H6O2]^2^+, [C6H4O]^2^+和单电荷离子[C6H6O2]^+。根据测定的电荷分离反应动能释放值T和由此计算出的两电荷间距R, 推测出过渡态的结构。有趣的是, 可利用单电荷离子[C6H6O2]^+的MIKES/CID谱区分苯二酚异构体。  相似文献   

13.
Analysis of crude methanolic extracts of fresh khat (Catha edulis) by liquid chromatography/mass spectrometry (LC/MS) revealed the presence of 62 cathedulin alkaloids (compared with 15 published structures). Many cathedulins generated doubly protonated molecules following electrospray ionisation and the ratio of doubly to singly protonated species could be manipulated by adjusting the electrospray capillary position and source conditions. By selecting the doubly protonated species for serial mass spectrometric analysis (MS/MS), it was possible to use an ion trap mass spectrometer to observe singly charged product ions at lower m/z values than ion trap MS/MS analysis of [M+H](+) would have allowed. These spectra were particularly valuable in elucidating the acylation patterns of cathedulins where MS/MS analysis of [M+H](+) resulted in loss of a large neutral species to yield a small singly charged fragment below the lower limit for ion trapping. Acylation patterns for most of the 62 cathedulins are proposed from mass spectrometric analysis, and the data obtained for a major unreported cathedulin of mass 1001 Da suggest that it belongs to a new group of cathedulins having a cathate dilactone bridge but not an evoninate bridge.  相似文献   

14.
Characteristics of electrospray ionization mass spectrometry/collision-induced dissociation (ESIMS/CID) mass spectra of microcystins, cyanobacterial cyclic heptapeptide hepatoxins, were examined. The collision conditions showed remarkable effects on the quality of the CID mass spectra, which were divided into three patterns according to the number of Arg residues. A characteristic cleavage reaction and neutral losses of MeOH, NH3 and guanidine group(s) from the (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4 E,6E-dienoic acid (Adda) and Arg residues were observed in the ESI and ESIMS/CID mass spectra, suggesting the most probable protonation sites in [M + H]+ and [M + 2H]2+ ions of microcystins. Microcystins with no Arg residue showed only [M + H]+ ions with a proton reacting at the methoxyl group in the Adda residue, and the ESIMS/CID/MS data revealed their structures unambiguously. The protonation site in [M + H]+ ions of microcystins with Arg residue(s) was the guanidine group. The [M + 2H]2+ ions of microcystins possessing one Arg residue had one proton on the Arg residue and probably another proton on the Adda residue, while the [M + 2H]2+ ions of microcystins having two Arg residues showed protonation at both Arg residues and the ESIMS/CID/MS data assigned their sequences. Structures of microcystins possessing one Arg residue can be assigned by ESIMS/CID/MS of [M + H]+ ions combined with those of [M + 2H]2+ ions.  相似文献   

15.
Ten homologous or isomeric singly, doubly, triply and quadruply charged cationic macrocyclic complexes I-Va, bn+ (n = 1-4) formed by the coordination of [Ru(bipy)2Cl]+ to the pyridyl N-atoms of a series of meso-(phenyl)m-(meta or para-pyridyl)n-porphyrins (m + n = 4) were transferred to the gas phase and structurally characterized by electrospray ionization (ESI) mass (MS) and tandem mass (MS/MS) spectrometry. Previously known to be stable in solution and in the solid state, I-Va, bn+ are found to constitute also a new class of stable, long-lived multiply charged gas-phase ions with spatially separated charge sites. Increasing intramolecular electrostatic repulsion from Ia, b+ to IVa, b3+ facilitates in-source and tandem collision-induced dissociation (CID). However, for the quadruply charged ions Va, b4+, electrostatic repulsion is alleviated mainly by ion pairing with the CF3SO3- counterion forming the salt clusters [Va,b/CF3SO3]3+ and [Va,b/(CF3SO3)2]2+ with reduced charge states. Ion-pairing that yields [IVa,b/CF3SO3]2+ is also observed as a minor ESI process for the triply charged ions IVa, b3+. The gaseous ions I-Va, bn+ (n = 2, 3 or 4) dissociate by sequential 'charge partitioning' with the formation of two cationic fragments by the release of [Ru(bipy)2Cl]+. The meta (a) and para (b) isomers and the positional isomers II2+ and III2+ display nearly identical ESI-MS and ESI-MS/MS spectra. ESI-MS/MS of I-Va, bn+ shows that the Ru-py(P) is, intrinsically, the weakest bond since this bond breaks preferentially upon CID.  相似文献   

16.
Suppression of the selective cleavage at N‐terminal of proline is observed in the peptide cleavage by proteolytic enzyme trypsin and in the fragment ion mass spectra of peptides containing Arg‐Pro sequence. An insight into the fragmentation mechanism of the influence of arginine residue on the proline effect can help in prediction of mass spectra and in protein structure analysis. In this work, collision‐induced dissociation spectra of singly and doubly charged peptide AARPAA were studied by ESI MS/MS and theoretical calculation methods. The proline effect was evaluated by comparing the experimental ratio of fragments originated from cleavage of different amide bonds. The results revealed that the backbone amide bond cleavage was selected by the energy barrier height of the fragmentation pathway although the strong proton affinity of the Arg side chain affected the stereostructure of the peptide and the dissociation mechanism. The thermodynamic stability of the fragment ions played a secondary role in the abundance ratio of fragments generated via different pathways. Fragmentation studies of protonated peptide AACitPAA supported the energy‐dependent hypothesis. The results provide an explanation to the long‐term arguments between the steric conflict and the proton mobility mechanisms of proline effect.  相似文献   

17.
Charge exchange reactions within a triple quadrupole mass spectrometer characterize doubly charged ions formed in the ion source. Two methods have been developed for identifying the singly charged ions formed from doubly charged ions by charge exchange in the collision quadrupole. The first is based on the characteristically high kinetic energy-to-charge ratios of the products of charge exchange; this property can be used to separate these ions from all other singly charged ions. This retarding potential method is analogous to procedures for recording doubly charged ion mass spectra using sector instruments. The second method is based on the fact that, although mass remains constant in the charge exchange reaction, the change in mass-to-charge ratio can be followed. A charge exchange linked scan, predicated on changes in charge rather than mass, but otherwise analogous to neutral loss/gain scans, is described. Information on the structure of doubly charged ions can be obtained by recording the fragmentation products of dissociative charge exchange. The utility of the charge exchange linked scan for the selective identification of polynuclear aromatic compounds in a complex mixture is described. The methods given can be generalized to cover other charge permutation reactions.  相似文献   

18.
The fragmentation properties of singly and doubly lithiated polytetrahydrofuran (PTHF) were studied using energy-dependent collision-induced dissociation. The product ion spectrum of [PTHF + Li]+ showed the formation of three different series corresponding to product ions with hydroxyl, aldehyde and vinyl end-groups. Interestingly, besides these series, two additional, non-lithiated product ions C4H9O+ and C4H 7 + were identified in the MS/MS spectra. The MS/MS of the doubly lithiated PTHF ([PTHF + 2Li]2+) with a number of repeat units ranging from 8 to 27 showed the formation of product ions similar to those of the singly lithiated series, however, doubly lithiated product ions and product ions formed by the loss of one Li+-ion from the precursor ion also appeared with significant abundances. Analysis of the breakdown curves for the singly and doubly charged PTHF indicated that the series A ions are formed most probably together with the series B ions, while members of the series C ions appeared at significantly higher collision energies. The fragmentation properties of [PTHF + Li]+ and [PTHF + 2Li]2+ were also interpreted using the survival yield method. It was found that the collision energy/voltage necessary to obtain 50% fragmentation (CV50) was dependent linearly on the number of the repeat units, i.e., on the size, or the number of degrees of freedom (DOF).  相似文献   

19.
双电荷离子[C_(12)H_(12)N_2O]~(2+)和[C_(12)H_(12)N_2S]~(2+)的气相单分子分解反应研究任达,贾维平,李智立,刘淑莹(中国科学院长春应用化学研究所,长春,130022)关键词双电荷离子,质量分析离子动能谱,串联质谱,4...  相似文献   

20.
The formation and collisionally activated dissociation (CAD) behavior of a series of complexes containing cyclic or linear diketone ligands and alkali, alkaline earth, or transition metal ions are investigated. Electrospray ionization (ESI) is utilized for introduction of the metal ion complexes into a quadrupole ion trap mass spectrometer. The proximity of the carbonyl groups is crucial for formation and detection of ion complexes by ESI. For example, no metal ion complexes are observed for 1,4-cyclohexanedione, but they are readily detected for the isomers, 1,2-and 1,3-cyclohexanedione. Although the diketones form stable doubly charged complexes, the formation of singly charged alkaline earth complexes of the type (nL + M2+ ? H+)+ where L = 1,3-cyclohexanedione or 2,4-pentanedione is the first evidence of charge reduction. CAD investigations provide further evidence of charge reduction processes occurring in the gas-phase complexes. The CAD studies indicate that an intramolecular proton transfer between two diketone ligands attached to a doubly charged metal ion, followed by elimination of the resulting protonated ligand, produces the charge reduced complex. For transition metal complexation, the preference for formation of doubly charged versus singly charged complexes correlates with the keto-enol distribution of the diketones in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号