首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to further explore the profile control and displacement mechanism of continuous and discontinuous phase flooding agent, the concentration distribution mathematical model of microsphere dispersion system in different branch channels is established, and its particle phase separation is simulated by using microfluidic technology. On this basis, in order to research the migration and plugging characteristics of microspheres, the visualization experiments on micro oil displacement mechanism of polymer solution and microspheres are carried out. And the experiment on the injection, migration, and plugging performance of microspheres in the multi-point core is performed. Results indicate that microspheres are in the axis of the channel due to the effect of fluid shear stress, and preferentially enter the large channel with low resistance and high flow velocity, which results in no particle or few particles in the small aperture and low flow velocity channel. The microspheres have better migration and retention capacity in the core and their migration shows the characteristic of “fluctuating pressure change”. Compared with polymer solution, the alleviation of “entry profile inversion” and the better migration and plugging performance of microsphere dispersion system can realize deep fluid diversion and expand sweep volume.  相似文献   

2.
The full perturbation expansion for the response (or density—density correlation) function is examined in order to provide a useful general theory of excitation energies, oscillator strengths, dynamic polarizabilities, etc., that is more accurate than the random phase approximation. It is first shown how the formal partition of the diagrammatic version of the perturbation expansion into reducible and irreducible diagrams is generally useless as the latter category contains all the difficult terms which have heretofore resisted analysis in all but a haphazard form. It is then shown how the diagram for the response function can be partitioned into “correlated” and “uncorrelated” subsets. Restricting attention to the particle—hole blocks of the full response function, the “uncorrelated” diagrams desecribe the propagation of a particle—hole pair in an N-electron system where the particle and hole are each interacting with the remaining electrons but they are not interacting with each other. The “correlated” diagrams are those containing the hole—particle interactions, and, by defining a new class of reducible and irreducible diagrams, these are all summed to provide a perturbation expansion of the effective two-body hole—particle interaction that appears in the inverse of the response function. The “uncorrelated” diagrams are further partitioned into two sets, one of which is summed to all orders, while the other set is inverted in an order by order fashion. The final result presents a perturbation expansion for the inverse of the response function that is analogous to the Dyson equation for one-electron Green functions. Maintaining the perturbation expansion through first order for the inverse of the response function yields the eigenvalue equation of the familiar random phase approximation, while truncation at second order provides the most advanced theories that have been generated by the equations-of-motion method.  相似文献   

3.
We have studied the rheological properties of fumed silica particle-stabilized emulsions. Two particles of different polarity were considered, the first more hydrophilic “Aerosil R7200,” the second more hydrophobic “Aerosil R972.” These particles flocculate and probably form a network at the investigated concentration. The flow curves of emulsions stabilized by a single type of particles exhibit yield stress, shear-thinning behavior and thixotropy. Moreover they display rheological features typical of gels. These features are attributed to strengthening of the particle network by droplets. Moreover the rheological properties of w/o emulsions stabilized by hydrophobic are similar to the ones of o/w emulsions stabilized by hydrophilic particles. The rheological properties of o/w emulsions stabilized by mixtures of hydrophilic and hydrophobic particles have then been studied by keeping the total particle concentration constant and varying the mass ratio between particles. The results show that when the hydrophobic particle concentration increases, the viscosity and stability of emulsions decrease establishing evidence that the network is weakened due to preferential orientation of hydrophobic particles towards the oil phase.  相似文献   

4.
《印度化学会志》2023,100(2):100886
In this work, the statistical (“Numerical”) modelling of activation energy and chemical reaction on non-Newtonian liquid motion via stretching sheet (SS) were performed, analysed statistically, employing the shooting technique. The convective boundary conditions are considered on Casson liquid (“non-Newtonian”) motion with couple stress SS. The behaviour of thermophoresis diffusion and Brownian motion via a special effect of non-linear thermal radiation are assuming in temperature equation for liquid motion. This analysis highly governing nonlinear system of D. Es of velocity, temperature, concentration and activation are simulated via iterative scheme encoded with MATLAB programming language. The geometric model is described bvp 4th order of R-K-F (“Range-Kutta-Fehlberg”) scheme. We found that, 35% of heat transfer rate produces in motion of couple stress Casson nanofluid and the activation energy released 28% of mass transfer rate at stretching surface. A comparative result of linear and nonlinear SS presented via various dimensionless parameters on graphs and tables.  相似文献   

5.
Results of previous work1 on a theoretical explanation of the “spurt effect” in polymer melt flow are extended. A modified Doi—Edwards liquid is shown to support axisymmetric traveling waves on an interface between high and low shear-rate phases in capillary flow. The stability of these perturbations is found to be governed by normal stress effects and may be related to certain types of melt fracture. Observed effects of varying the capillary length are explained qualitatively.  相似文献   

6.
Patel and Hanson have observed discrete spectrum-like spontaneous luminescence of, and simultaneous current flow through, certain organic and ionic crystals when they were either cooled or heated at a constant rate. The hypothetical intermediate electronic states (neither bulk nor localized-type) are thought to be responsible for this effect. By the “turning over process”, these states can transport a definite quantity of electric charge through the crystal for special discrete (size, shape, surface contamination, temperature and pressure dependent) boundary conditions, even if the crystal is a semiconductor or insulator.  相似文献   

7.
We test the relative performances of two different approaches to the computation of forces for molecular dynamics simulations on graphics processing units. A “vertex‐based” approach, where a computing thread is started per particle, is compared to an “edge‐based” approach, where a thread is started per each potentially non‐zero interaction. We find that the former is more efficient for systems with many simple interactions per particle while the latter is more efficient if the system has more complicated interactions or fewer of them. By comparing computation times on more and less recent graphics processing unit technology, we predict that, if the current trend of increasing the number of processing cores—as opposed to their computing power—remains, the “edge‐based” approach will gradually become the most efficient choice in an increasing number of cases. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
An analytical study of diffusiophoresis in a homogeneous suspension of identical spherical charge-regulating particles with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a uniform prescribed concentration gradient is presented. The charge regulation due to association/dissociation reactions of ionogenic functional groups on the particle surface is approximated by a linearized regulation model, which specifies a linear relationship between the surface charge density and the surface potential. The effects of particle-particle electrohydrodynamic interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the electric potential profile, the ionic concentration distributions, and the fluid flow field in the electrolyte solution surrounding the particle in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved with the equilibrium surface charge density (or zeta potential) of the particle as the small perturbation parameter. Closed-form formulas for the diffusiophoretic velocity of the charge-regulating sphere correct to the second order of its surface charge density or zeta potential are derived. Our results indicate that the charge regulation effect on the diffusiophoretic mobility is quite sensitive to the boundary condition for the electric potential specified at the outer surface of the unit cell. For the limiting cases of a very dilute suspension and a very thin or very thick electric double layer, the particle velocity is independent of the charge regulation parameter.  相似文献   

9.
The results and implications of direct force measurements between molecularly smooth mica surfaces in liquids are reviewed. These discussions include four interactions fundamental to colloid science: van der Waals forces, double layer forces, adhesion forces and structural or solvation forces (e.g. hydration forces). Also considered are the effects of preferential surface adsorption of solute molecules on these interactions, e.g. surfactant adsorptions from aqueous solutions and water condensation from non-aqueous solvents.In aqueous media it is apparent that the DLVO theory is valid at all surface separations down to the “force barrier”, but that under certain conditions hydration forces can become significant at distances below 30 Å.The measured adhesion force between two solid surfaces can be simply related to their surface energies and where meniscus forces are also present due to “capillary condensation” from vapor solvent, their effect on adhesion can be understood in terms of straightforward bulk thermodynamic principles. Here, too, it is concluded that structural forces cannot be ignored.Our results suggest that structural forces may either very monotonically with distance or be oscillatory with a periodicity equal to the molecular size. Their origin, nature, mode of action and importance for particle interactions will no doubt take many years to sort out.  相似文献   

10.
The forces acting between colloidal particles and between surfaces are of utmost importance for determining the behaviour of dispersed systems and adhesion phenomena. Several techniques are now available for direct measurement of these surface forces. In this review we focus on some of these methods. Two techniques for measuring forces between macroscopic solid surfaces; the interferometric surface force apparatus, known as the SFA, and a novel instrument which is based on a bimorph force sensor, the so-called MASIF, are described in some detail. Forces between a macroscopic surface and a particle can be measured with the atomic force microscope (AFM) using a colloidal probe, or by employing total internal reflection microscipy (TIRM) to monitor the position of a colloidal particle trapped by a laser beam. We also describe two different techniques that can be used for measuring forces between “soft” interfaces, the thin film balance (TFB) for single foam, emulsion and solid/fluid/fluid films, and osmotic stress methods, commonly used for studying interactions in liquid crystalline surfactant phases or in concentrated dispersions. The advantages and limitations of each of these techniques are discussed and typical results are presented.  相似文献   

11.
12.
13.
The modern theory of the static electron response of a metal surface is reviewed. The basic motive of the survey, originated from the analysis of the contradictions between the widely accepted sharp boundary models and experiment, is self-consistency. Applications of the various versions of the density functional formalism to the surface response calculations are considered. In particular, the screening of the uniform electrostatic field is discussed on the basis of the local (Thomas-Fermi type) and nonlocal statistical models, within the Kohn-Sham scheme (in the linear response approximation and beyond it) and using sum rules. The results of the self-consistent analysis of a number of phenomena at the metal-vacuum interphase (e.g. electron and ion field emission or ionization and polarization of a minute metal particle) are briefly described. The main attention is given to the effect of a metal on the electrical properties ( the bilayer capacity first of all) of the metal-electrolyte interphases. The results obtained in this field aggravated the question about the possibility of the negative capacity values, sharply arised in connection with the “Cooper-Harrison catastrophe”. This question and the associated problem of the bilayer instability are discussed in the survey applying the results to the model microscopical calculations and the “gedanken experiments” with the electro-mechanical “catastrophe machines”.  相似文献   

14.
Evaporative self-assembly (ESA), based on the “coffee-ring” effect, is a versatile technique for assembling particle solutions into mesoscale patterns and structures on different substrates. ESA works with a wide variety of organic and inorganic materials, where the solution is a combination of volatile solvent and nonvolatile solute. Modified ESA methods, such as “stop-and-go flow coating,” use a programmed meniscus “stick–slip” motion to create mesoscale assemblies with controlled shape, size, and architecture. However, current methods are not scalable for increased production volumes or patterning large surface areas. We demonstrate a new ESA method, where an oscillating blade controls the meniscus depinning and drives the evaporative assembly of solutes at the pinned meniscus. Results show that oscillation frequency and substrate speed control time/distance intervals between successive meniscus depinning, and the assembly dimensions depend on solution concentration, oscillation frequency, substrate speed, and meniscus height. We report the mechanism of the meniscus depinning and the control over assembly cross-sectional dimensions. This advance provides a scalable ESA method with faster processing times and maintained advantages. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1545–1551  相似文献   

15.
Dissipative particle dynamics simulations are applied to investigate the monolayer and multilayer film formations on different solid substrates by physical deposition. The influences of the polymer concentration, the polymer chain length, the solvent quality, and the interactions between the polymer solution and the solid substrate surface on the film formation dynamics and the mechanism are studied in detail. The results are analyzed in terms of the thickness and the shape of the deposited film, the kinetics of phase separation in the polymer solution, and the contact angle formed between the polymer aggregations and the substrate surface. Moreover, we suggest two strategies, designing a deposition process analogous to “chemical titration” and physically blocking interlayer diffusion by a simple crosslinked network barrier, to deposit the compact monolayer and multilayer films with better quality, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 353–365, 2009  相似文献   

16.
The electrophoretic mobility of a spherical colloidal particle with low zeta potential near a solid charged boundary is calculated numerically for arbitrary values of the double layer thickness by a generalization of Teubner's method to the case of bounded flow. Three examples are considered: a sphere near a nonconducting planar wall with electric field parallel to the wall, near a perfectly conducting planar wall with electric field perpendicular to the wall, and on the axis of a cylindrical pore with electric field parallel to the axis. The results are compared with recent analytical calculations using the method of reflections. For the case of a charged sphere near a neutral surface, the reflection results are quite good, provided there is no double layer overlap, in which case there can be extra effects for constant potential particles that are entirely missed by the analytical expressions. For a neutral sphere near a charged surface, the reflection results are less successful. The main reason is that the particle feels the profile of the electroosmotic flow, an effect ignored by construction in the method of reflections. The general case is a combination of these, so that the reflections are more reliable when the electrophoretic motion dominates the electroosmotic flow. The effect on particle mobility of particle-wall interactions follows the trend expected on geometric grounds in that sphere-plane interactions are stronger than sphere-sphere interactions and the effect on a sphere in a cylindrical pore is stronger still. In the latter case, particle mobility can fall by more than 50% for thick double layers and a sphere half the diameter of the pore. The agreement between numerical results and analytical results follows the same trend, being worst for the sphere in a pore. Nevertheless, the reflections can be reliable for some geometries if there is no double layer overlap. This is demonstrated for a specific example where reflection results have previously been compared with experiments on protein mobility through a membrane (J. Ennis et al., 1996, J. Membrane Sci. 119, 47). Copyright 1999 Academic Press.  相似文献   

17.
This work concerns the flow of an incompressible viscous fluid past a porous sphere in presence of transverse applied uniform magnetic field, using particle-in-cell method. The Brinkman equations are used in porous region and the Stokes equations for non-porous region. At the fluid-porous interface, the stress jump boundary condition for tangential stresses along with continuity of normal stress and velocity components are used. Four known boundary conditions on the hypothetical surface are considered and compared: Happel’s, Kuwabara’s, Kvashnin’s and Cunningham’s (Mehta-Morse’s condition). The hydrodynamic drag force experienced by a porous spherical particle in a cell and hydrodynamic permeability of membrane built up by porous spherical particles are evaluated. The patterns of streamlines are also obtained and discussed. The effect of stress jump coefficient, Hartmann number, dimensionless specific permeability of the porous particle and particle volume fraction on the hydrodynamic permeability and streamlines are discussed. Some previous results for hydrodynamic drag force and dimensionless hydrodynamic permeability have been verified.  相似文献   

18.
A uniform matrix with randomly distributed impurity centers, which create an effective field repulsing particles that diffuse in the membrane and prevent the formation of “percolation” paths in “thick” membranes, is considered as a barrier layer model. Two repulsive potential types were analyzed, one decreasing according to a power law depending on the distance between the localization center of an impurity and the diffusing particle and the other decreasing exponentially as a function of this distance. An exponential dependence of the permeability constants of the desired components on the membrane layer thickness was predicted. According to this dependence, the components to be separated effectively pass through membrane layers only in local regions, where the force field that retards particles is weakened because of a fluctuation decrease in the concentration of centers repulsing the diffusing particles. The process is then characterized by nonequilibrium transmembrane transfer conditions, under which particles have time to be effectively “sorbed” only in regions of increased membrane permeability. Under these conditions, the selectivity of membrane separation can be influenced by the state of the surface of membranes. For this reason, the modification of the surface of barrier structures can be used to control their selective permeability to the desired products. Equations for the rate of component transfer through barrier membrane layers under the most general boundary conditions were obtained. These equations can be used to analyze separation on membranes with barrier structures subjected to surface modification.  相似文献   

19.
Metal sols composed of metal nanoparticles (1 - 10 nm in diameter) protected with polymer molecules may be regarded as dispersions of polymer-metal complexes formed due to cooperative non-covalent (e.g., hydrophobic, coulombic) interaction of polymer chains with the surface of metal nanoparticles. The sols are commonly prepared by reducing of metal ions in solutions of appropriate polymers. The interactions between macromolecules and nanoparticles are reversible. In the case of long polymer chains and minute particles, the equilibrium constant of the reaction exponentially depends on the surface area of the particle. The probability of mutual “recognition” (complex formation) of growing particle and a macromolecule rapidly increases from practically zero to practically unity in narrow interval of the particle's diameters. The recognition is followed with the shadowing of the particles and the stop of their growths. Such kind of processes was termed “pseudo-template”. In frame of the concept of pseudo-template processes can be estimated: (1) the conditions at which sol particles of desirable size can be prepared, (2) the influence of temperature, polymer concentration, nanoparticles size, and other conditions on the stability of polymer - particle complex having been prepared, and (3) the conditions at which stable sol does not exist and can not be prepared at all. The interactions between metal nanoparticles and macromolecules are highly selective regard to the structure of polymer chains. The property can be effectively used for the control the size characteristics of metal nanoparticles (in course of their formation) and the stability of metal sols. The selectivity provides high conversions in catalytic chemical modification reactions in which a macromolecule is the substrate and a component of the catalyst in the same time. As an example, the hydrolysis of lactame groups in monomer unites of poly(N-vinyl pyrrolidone) catalyzed with copper sols is discussed.  相似文献   

20.
The diffusiophoresis in a homogeneous suspension of identical dielectric spheres with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a constant imposed concentration gradient is analytically studied. The effects of particle interactions (or particle volume fraction) are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the ionic concentration distributions, the electrostatic potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the diffusiophoretic velocity of the dielectric sphere in closed form correct to the second order of its surface charge density or zeta potential are obtained from a balance between its electrostatic and hydrodynamic forces. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号