首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of [Cp2TiL]+[RR′NCS2]? complexes, where L is the conjugate base of acetylacetone, benzoylacetone or 8-hydroxyquinoline and R = CH3, R′ = C6H5CH2; R = C2H5, R′ = C6H4CH3; R = H, R′ = C5H9; RR′ = C6H12, have been synthesised in aqueous medium by the reaction of [Cp2TiL]+Cl? with RR′NCS?2Na+. Conductivity measurements in nitrobenzene solution indicate that these complexes are electrolytes. Both the IR and NMR studies demonstrate that the ligand L is chelating in all these complexes. Consequently, tetrahedral coordination about the titanium atom is proposed. In addition to these studies, elemental analyses and magnetic susceptibility have been carried out for these complexes.  相似文献   

2.
Novel η1-vinyl complexes of the type Cp(CO)(L)FeC(OMe)C(R)R′ (R = R′ = H, Me; R = H, R′ = Me; L = Me3P, Ph3P) are obtainied via methylation of the acyl complexes Cp(CO)(L)FeC(O)R (R = Me, Et, i-Pr) with MeOSO2F and subsequent deprotonation of the resulting carbene complexes [Cp(CO)(L)FeC(OMe)R]SO3F with the phosphorus ylide Me3PCH2. The same procedure can be applied for the synthesis of the pentamethylcyclopentadienyl derivative C5Me5(CO)(Me3P)FeC(OMe)CH2, while treatment of the hydroxy or siloxy carbene complexes [Cp(CO)(L)FeC(OR)Me]X (R = H, Me3Si; X = SO3CF3) with Me3CH2 results in the transfer of the oxygen bound electrophile to the ylidic carbon. Some remarkable spectroscopic properties of the new complexes are reported.  相似文献   

3.
Methyl- or phenylN-carboxamido-complexes of platinum(II) Pt(NHCOR')RL2 (L = PEt3, R = Me, R′ = Me, CH = CH2; L = PEt3, R = Ph, R′ = Me; L = PMe2Ph, R = Ph, R′ = Me, Ph; L = PMePh2, R = Ph, R′ =3, R = Ph, R′ = Me) have been prepared by the reaction of KOH with cationic nitrile complexes [PtR(NCR′)L2]BF4. Thermally unstable hydrido-N-carboxamido-complexes could be detected spectroscopically. IR and NMR (1H, 31P) spectra of some of the complexes indicate the existence of a solvent- and temperature-dependent equilibrium between syn-and anti-isomers arising from restricted rotation about the NC bond of the carboxamido-group. The anti-isomer is favoured by nonpolar solvents and by increasing bulk of L. In the complex [PtH(NCCH CH2)(PEt3)2]BF4, IR and NMR spectra show acrlonitrile to be bound through nitrogen, not through the olefinic CC bond.  相似文献   

4.
Summary Reactions of palladium(II) chloride with 2-substituted pyridines (HL), 2-(p-R-C6H4-Y)-C5H4N (R = H, CH3, Cl; Y= NH, NCH3, O, S, CH2) form 12 complexestrans-[PdCl2(HL)2], HL being coordinated through a pyridine-N atom. When the ratio PdCl2/HL = 1/1, the pyridine derivatives with Y = NH are cyclopalladated to form another type of complexes [PdClL]2. In [PdClL]2 the deprotonated ligand L is chelated through pyridine-N and phenylortho-C atoms forming an unusual six-membered palladacycle. Like other cyclopalladated complexes containing a five-membered palladacycle, [PdClL]2 reacts with pyridine (py) to form adducts [PdClL(py)]. [Pd(acac)L] and [Pd(dtc)L] were also prepared and characterized (acac=acetylacetonate and dtc =N,Ndimethyldithiocarbamate ion).  相似文献   

5.
Preparations are described of several monometallic complexes (bipym)PtR2 [bipym = 2,2′-bipyrimidyl; R = Me, CF3, Ph, 1-adamantylmethyl (adme); R2 = (CH2)4] and bimetallic analogues R2Pt(μ-bipym)PtR′2 [R = R′ = CH3, C6H5, adme; R = CH3, R′ = Ph, adme, CF3]. IR, 1H NMR and UV/visible spectroscopic characteristics of the two modes of bipyrimidyl coordination are discussed.  相似文献   

6.
Abstract

The interaction of the sodium salts of thiosemicarbazones with diphenylantimony chloride in 1:1 molar ratio in benzene solution lead to the formation of derivatives, Ph2Sb[SC(NH2)NN: C(R)R′] where R = H; R′ [dbnd] C6H5, CH3OC6H4, C6H5CH[dbnd]CH, and R′ [dbnd] CH3; R′[dbnd]C6H5, CH3OC6H4, C6H4CH3, respectively. The resulting complexes have been characterised on the basis of elemental analyses and molecular weight determination. The mode of bonding of the ligands with the metal atom has been proposed on the basis of I.R., 1H and 13C NMR studies. All these ligands are found to behave as monofunctional bidentate moiety in these complexes.  相似文献   

7.
《Polyhedron》1999,18(5):729-733
Equimolar quantities of [Mo (CO) (η2-RC2R′)2Cp] [BF4] (R=R′=Me Ph R=Me R′=Ph) and L L′ or L″ {L L′ or L″= [WI2 (CO){PhP(CH2CH2PPh2)2-PP′} (η2-RC2R′)]} (L R=R′=Me L′ R=R′=Ph L″ R=Me R′=Ph) react in CH2Cl2 at room temperature to give the new bimetallic complexes[Mo (CO) (L L′ or L″–P) (η2-RC2R′)Cp] [BF4] (1–9) via displacement of the alkyne ligand on the molybdenum centre The complexes have been characterised by elemental analysis IR and 1 H NMR spectroscopy and in selected cases by 31 P NMR spectroscopy.  相似文献   

8.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

9.
Thirty triorganotin(IV) derivatives of the type R3Sn(R′COCHCOCH2COR″) and [R3Sn]2 (R′COCHCOCHCOR″) (where R = CH3, C2H5, nC3H7, nC4H9 and C6H5 and R′ = R″ = CH3, C6H5 or R′ = C6H5, R″ = CH3) have been synthesised by the interaction of R3SnCl with mono- or disodium salt of 2, 4, 6-heptanetrione, 1-phenyl-1, 3, 5-hexanetrione and 1, 5-diphenyl-1, 3, 5-pentanetrione in 1:1 and 2:1 molar ratios, respectively. The complexes have been examined by their molecular weight, IR, PMR and elemental analyses and their tentative structures assigned. Both “Z” and “E” forms have been identified in the 1:1 complexes in equilibrium with the enol form containing five coordinate tin. The 2:1 derivatives contain one five- and other four coordinated tin(IV) except the phenyl analogue where both the tins are five coordinated.  相似文献   

10.
A quantum chemical study of spatial and electronic structures of molecules in the frame complexes, bis[3,3′(RR′)-ketiminepropyl]methylamine nickel dichlorides, where R = H, CH3, and R′ = H, CH3, has been performed by DFT(B3LYP/LANL2DZ) method. The molecules of these complexes were found to be in a triplet state. Energy stability of the endo form of the complex molecules was shown. In the molecule of bis[3,3′-aldiminopropyl]methylamine nickel dichloride (R = R′ = H), a considerable strengthening of the bond Ni-N(amine) takes place when passing from the diamagnetic into paramagnetic state, and all bonds Ni-N become equivalent with respect to interatomic distance values. The topology analysis of the electron density for the complexes with R = R′ =H and R = R′ = CH3 was carried out. It is stated that all Ni-N bonds are covalent in the molecules of paramagnetic complexes.  相似文献   

11.
Electrochemical investigations of the reduction of dicationic, monocationic and neutral dinitrosyl molybdenum complexes in nitromethane and acetonitrile are reported. All the compounds with the general formulae: [Mo(NO)2L2L′2]2+, [Mo(NO)2L2L′Cl]+ and Mo(NO)2L2Cl2 (L = CH3CN, CH2CHCN, C6H5CN, C5H5N, P(C6H5)3, L2 = 2,2′-bipyridine, L′ = CH3CN and L′2 = 2,2′-bipyridine) are reducible by one electron to yield 19-electron complexes. The dicationic complexes undergo a reversible one-electron transfer. For the mono- and dichlorocomplexes, the one-electron transfer induces the facile exchange of the chloroligand in the 19-electron complexes except for L2 = 2,2′-bipyridine. However, the exchange of the chloroligand is followed by the fast anation by Cl? of the remaining 18-electron chlorocomplexes to afford [Mo(NO)2Cl3L]? and [Mo(NO)2Cl4]2? which are reducible at higher negative potentials than dichloro- and monochlorocomplexes. The multiple electrochemical step system is not catalytic, but of the electroactivation type.  相似文献   

12.
The 1H NMR and infrared spectra of a number of β-diketone, thio-β-diketone, and β-iminoketone derivatives of trimethylplatinum(IV) have been recorded. The spectra indicate that in the parent compounds [Pt(CH3)3L]2, (L = β-iminoketone or thio-β-diketone) the β-iminoketones bridge via the γ-carbon atom as found in β-diketone complexes, while the thio-β-diketones bridge via sulfur atoms. Complexes of the type [Pt(CH3)3LR] (R = a neutral unidentate ligand) and [Pt(CH3)3BipyL] (Bipy = 2,2′-bipyridine) have also been studied.  相似文献   

13.
The mass spectra of some (Z)α-(4-R′-phenyl)-β-(2-thienyl-5-R)acrylonitriles (R = H, CH3, Br; R′ = H, CH3O, CH3, Cl, NO2) at 70 eV are reported. Mass spectra exhibit pronounced molecular ions. The compound's where R = H, and CH3 are characterized by the occurrence of a strong [M - H]+ peak. Moreover, in all the compounds a m/z 177 peak occurs. In the compounds where R = H, [M - HS]* and [M - CHS]* ions are present except the nitroderivatives. Where R = CH3, [M - HS]+ ion occurs.  相似文献   

14.
α-Halocarbeneporphyriniron complexes, Fe(P)(C(Cl)R) react with alcohols or thiols with substitution of the chlorine atom by OR′ or SR′ groups. This reaction has been used to obtain new carbeneporphyriniron complexes in which the carbene ligand is substituted by two electrodonating groups. The complexes Fe(P)(C(XR′)R) with XR′ = OCH3 or OC2H5, R = CH3 or (CH3)2CH and P = TPP (tetraphenylporphyrin) or TTP (tetratolylporphyrin) and with XR′ = SCH2C6H5, R = CH3 and P = TPP or TTP, have been isolated and fully characterized.  相似文献   

15.
The complex [NiCl2(PMe3)2] reacts with one equivalent of mg(CH2CMe3)Cl to yield the monoalkyl derivative trans-[Ni(CH2CMe3)Cl(PMe3)2], which can be carbonylated at room temperature and pressure to afford the acyl [Ni(COCH2CMe3)Cl(PMe3)2]. Other related alkyl and acyl complexes of composition [Ni(R)(NCS)(PMe3)2] (R = CH2CMe3, COCH2CMe3) and [Ni(R)(η-C5H5)L] (L = PMe3, R = CH2CMe3, COCH2CMe3; L = PPh3, R = CH2CMe2Ph) have been similarly prepared. Dialkyl derivatives [NiR2(dmpe)] (R = CH2SiMe3, CH2CMe2Ph; dmpe = 1,2-bis(dimethylphosphine)ethane, Me2PCH2 CH2PMe2) have been obtained by phosphine replacement of the labile pyridine and NNN′N′-tetramethylethylenediamine ligands in the corresponding [Ni(CH2SiMe3)2(py)2] and [Ni(CH2CMe2Ph)2(tmen)] complexes. A single-crystal X-ray determination carried out on the previously reported trimethylphosphine derivative [Ni(CH2SiMe3)2(PMe3)2] shows the complex belongs to the orthorhombic space group Pbcn, with a = 14.345(4), b = 12.656(3), c = 12.815(3) Å, Z = 4 and R 0.077 for 535 independent observed reflections. The phosphine ligands occupy mutually trans positions P-Ni-P 146.9(3)° in a distorted square-planar arrangement.  相似文献   

16.
The manganese carbonyl complex [MnBr(CO)3 L ] ( 1 ), where L = Ph2POCH2CH2OPPh2, was prepared by reacting [MnBr(CO)5] with the bidentate ligand 1, 2‐Bis(diphenylphosphinite)ethane. From this compound and the appropriate phosphite, phosphinite or phosphonite ligands were synthesized the complexes [MnBr(CO)2 LL ′], where L ′ = P(OMe)3 ( 2 ) or P(OEt)3 ( 3 ) and [MnBr(CO)3 L ′2], where L ′ =PPh(OEt)2 ( 4 ) or PPh2(OEt) ( 5 ). The obtained compounds have been characterized by elemental analysis, mass spectrometry, IR and NMR (1H, 13C and 31P) spectroscopies and X‐ray diffractometry for the complexes 1 , 4 and 5 .  相似文献   

17.
The cis‐[Rh(CO)2ClL] (1) complexes, where L = 2‐methylpyridine (a), 3‐methylpyridine (b), 4‐methylpyridine (c), 2‐phenylpyridine (d), 3‐phenylpyridine (e), 4‐phenylpyridine (f), undergo oxidative addition reactions with various electrophiles, like CH3I, C2H5I, C6H5CH2Cl or I2, to yield complexes of the types [Rh(CO)(COR)ClXL] (2) (where R = CH3 (i), C2H5 (ii), X = I; R = C6H5CH2 (iii), X = Cl) or [Rh(CO)ClI2L] (3) and [Rh(CO)2ClI2L] (4). The pseudo‐first‐order rate constants of CH3I addition with complexes 1 containing pyridine (g) and 2‐substituted pyridine (a and d) ligands were found to follow the order pyridine >2‐methylpyridine >2‐phenylpyridine. The catalytic activity of complexes 1 containing different pyridine ligands (a–g) on carbonylation of methanol was studied and, in general, a higher turnover number was obtained compared with that of the well‐known species [Rh(CO)2I2]?. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Cyanate Compounds and their Reactivity. XXI. Reactivity of Niobium(V) and Tantalum(V) Thiocyanates to N-Donators M2(NCS)10 reacts with ammonia or primary and secondary aliphatic amines to complexes of the types [M(NCS)(NH2)2NH]x, [M(NCS)3(NHR)2 H2NR], or [M(NCS)3(NR′2)2 HNR′2], with N-heterocyclic amines in a first step to [M(NCS)5L]-complexes and in a further step through a redox mechanism to [M(NCS)4L2] complexes. [M(NCS)5(CH3CN)] mCH3CN reacts with ammonia, or primary amines in acetonitrile over acetamidine and amidinolytic cleavage of M-NCS bonds to complexes of the type [M(NCS)a(NC(NHR″)CH3)b(CH3C(NH)NHR″)]x. The prepared compounds are characterized by analytical data, derivatographic measurements, and IR or visible absorption spectra (M = Nb, Ta; x = 2; R = n-C4H9; R′ = C2H5; L = pyridine or 4-methyl-pyridine; m = 0, 1, 2; a = 1 or 4; b = 4 or 1; R″ = H, n-C4H9).  相似文献   

19.
The synthesis of a new class of acylplatinum complexes of composition [Pt(OC6H4CO)LaLb] La = Lb = PR3, P(OR)3, Ph2PCH2CH2PPh2, AsR3; La = 2-picoline, 3-picoline, 4-picoline, 15NH2{CH2}5CH3, Lb = DMSO, is described. The complexes are synthesized from o-hydroxybenzaldehyde (salicylaldehyde) and K2PtCl4 and contain an organic chelating ligand bound to platinum via the phenolic oxygen and the aldehyde carbon. 1H, 13C, 31P and 195Pt NMR data for the new complexes are reported.  相似文献   

20.
Synthesis and Characterization of 2‐O‐Functionalized Ethylrhodoximes and ‐cobaloximes 2‐Hydroxyethylrhodoxime and ‐cobaloxime complexes L—[M]—CH2CH2OH (M = Rh, L = PPh3, 1 ; M = Co, L = py, 2 ; abbr.: L—[M] = [M(dmgH)2L] (dmgH2 = dimethylglyoxime, L = axial base) were obtained by reaction of L—[M] (prepared by reduction of L—[M]—Cl with NaBH4 in methanolic KOH) with BrCH2CH2OH. H2O—[Rh], prepared by reduction of H[RhCl2(dmgH)2] with NaBH4 in methanolic KOH, reacted with BrCH2CH2OH followed by addition of pyridine yielding py—[Rh]—CH2CH2OH ( 3 ). Complexes 1 and 3 were found to react with (Me3Si)2NH forming 2‐(trimethylsilyloxy)ethylrhodoximes L—[Rh]—CH2CH2OSiMe3 (L = PPh3, 4 ; L = py, 5 ). Treatment of complex 1 with acetic anhydride resulted in formation of the 2‐(acet oxy)ethyl complex Ph3P—[Rh]—CH2CH2OAc ( 6 ). All complexes 1 — 6 were isolated in good yields (55—71 %). Their identities were confirmed by NMR spectroscopic investigations ( 1 — 6 : 1H, 13C; 1 , 4 , 6 : 31P) and for [Rh(CH2CH2OH)(dmgH)2(PPh3)]·CHCl3·1/2H2O ( 1 ·CHCl3·1/2H2O) and py—[Rh]—CH2CH2OSiMe3 ( 5 ) by X‐ray diffraction analyses, too. In both molecules the rhodium atoms are distorted octahedrally coordinated with triphenylphosphine and the organo ligands (CH2CH2OH and CH2CH2OSiMe3, respectively) in mutual trans position. Solutions of 1 in dmf decomposed within several weeks yielding a hydroxyrhodoxime complex “Ph3P—[Rh]—OH”. X‐ray diffraction analysis exhibited that crystals of this complex have the composition [{Rh(dmg)(dmgH) (H2O)(PPh3)}2]·4dmf ( 7 ) consisting of centrosymmetrical dimers. The rhodium atom is distorted octahedrally coordinated. Axial ligands are PPh3 and H2O. One of the two dimethylglyoximato ligands is doubly deprotonated. Thus, only one intramolecular O—H···O hydrogen bridge (O···O 2.447(9)Å) is formed in the equatorial plane. The other two oxygen atoms of dmgH and dmg2—, respectively, act as hydrogen acceptors each forming a strong (intermolecular) O···H′—O′ hydrogen bridge to the H′2O′ ligand of the other molecule (O···O′ 2.58(2)/2.57(2)Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号